883 resultados para clinical decision support systems
Resumo:
Multibiometrics aims at improving biometric security in presence of spoofing attempts, but exposes a larger availability of points of attack. Standard fusion rules have been shown to be highly sensitive to spoofing attempts – even in case of a single fake instance only. This paper presents a novel spoofing-resistant fusion scheme proposing the detection and elimination of anomalous fusion input in an ensemble of evidence with liveness information. This approach aims at making multibiometric systems more resistant to presentation attacks by modeling the typical behaviour of human surveillance operators detecting anomalies as employed in many decision support systems. It is shown to improve security, while retaining the high accuracy level of standard fusion approaches on the latest Fingerprint Liveness Detection Competition (LivDet) 2013 dataset.
Resumo:
The purpose of this work is to develop a web based decision support system, based onfuzzy logic, to assess the motor state of Parkinson patients on their performance in onscreenmotor tests in a test battery on a hand computer. A set of well defined rules, basedon an expert’s knowledge, were made to diagnose the current state of the patient. At theend of a period, an overall score is calculated which represents the overall state of thepatient during the period. Acceptability of the rules is based on the absolute differencebetween patient’s own assessment of his condition and the diagnosed state. Anyinconsistency can be tracked by highlighted as an alert in the system. Graphicalpresentation of data aims at enhanced analysis of patient’s state and performancemonitoring by the clinic staff. In general, the system is beneficial for the clinic staff,patients, project managers and researchers.
Resumo:
Consideration of a wide range of plausible crime scenarios during any crime investigation is important to seek convincing evidence and hence to minimize the likelihood of miscarriages of justice. It is equally important for crime investigators to be able to employ effective and efficient evidence-collection strategies that are likely to produce the most conclusive information under limited available resources. An intelligent decision support system that can assist human investigators by automatically constructing plausible scenarios, and reasoning with the likely best investigating actions will clearly be very helpful in addressing these challenging problems. This paper presents a system for creating scenario spaces from given evidence, based on an integrated application of techniques for compositional modelling and Bayesian network-based evidence evaluation. Methods of analysis are also provided by the use of entropy to exploit the synthesized scenario spaces in order to prioritize investigating actions and hypotheses. These theoretical developments are illustrated by realistic examples of serious crime investigation.
Resumo:
Making diagnoses in oral pathology are often difficult and confusing in dental practice, especially for the lessexperienced dental student. One of the most promising areas in bioinformatics is computer-aided diagnosis, where a computer system is capable of imitating human reasoning ability and provides diagnoses with an accuracy approaching that of expert professionals. This type of system could be an alternative tool for assisting dental students to overcome the difficulties of the oral pathology learning process. This could allow students to define variables and information, important to improving the decision-making performance. However, no current open data management system has been integrated with an artificial intelligence system in a user-friendly environment. Such a system could also be used as an education tool to help students perform diagnoses. The aim of the present study was to develop and test an open case-based decisionsupport system.Methods: An open decision-support system based on Bayes' theorem connected to a relational database was developed using the C++ programming language. The software was tested in the computerisation of a surgical pathology service and in simulating the diagnosis of 43 known cases of oral bone disease. The simulation was performed after the system was initially filled with data from 401 cases of oral bone disease.Results: the system allowed the authors to construct and to manage a pathology database, and to simulate diagnoses using the variables from the database.Conclusion: Combining a relational database and an open decision-support system in the same user-friendly environment proved effective in simulating diagnoses based on information from an updated database.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Colorectal cancer (CRC) is the most common tumour type in both sexes combined in Western countries. Although screening programmes including the implementation of faecal occult blood test and colonoscopy might be able to reduce mortality by removing precursor lesions and by making diagnosis at an earlier stage, the burden of disease and mortality is still high. Improvement of diagnostic and treatment options increased staging accuracy, functional outcome for early stages as well as survival. Although high quality surgery is still the mainstay of curative treatment, the management of CRC must be a multi-modal approach performed by an experienced multi-disciplinary expert team. Optimal choice of the individual treatment modality according to disease localization and extent, tumour biology and patient factors is able to maintain quality of life, enables long-term survival and even cure in selected patients by a combination of chemotherapy and surgery. Treatment decisions must be based on the available evidence, which has been the basis for this consensus conference-based guideline delivering a clear proposal for diagnostic and treatment measures in each stage of rectal and colon cancer and the individual clinical situations. This ESMO guideline is recommended to be used as the basis for treatment and management decisions.
Resumo:
Coastal flooding poses serious threats to coastal areas around the world, billions of dollars in damage to property and infrastructure, and threatens the lives of millions of people. Therefore, disaster management and risk assessment aims at detecting vulnerability and capacities in order to reduce coastal flood disaster risk. In particular, non-specialized researchers, emergency management personnel, and land use planners require an accurate, inexpensive method to determine and map risk associated with storm surge events and long-term sea level rise associated with climate change. This study contributes to the spatially evaluation and mapping of social-economic-environmental vulnerability and risk at sub-national scale through the development of appropriate tools and methods successfully embedded in a Web-GIS Decision Support System. A new set of raster-based models were studied and developed in order to be easily implemented in the Web-GIS framework with the purpose to quickly assess and map flood hazards characteristics, damage and vulnerability in a Multi-criteria approach. The Web-GIS DSS is developed recurring to open source software and programming language and its main peculiarity is to be available and usable by coastal managers and land use planners without requiring high scientific background in hydraulic engineering. The effectiveness of the system in the coastal risk assessment is evaluated trough its application to a real case study.
Resumo:
Much research has focused on desertification and land degradation assessments without putting sufficient emphasis on prevention and mitigation, although the concept of sustainable land management (SLM) is increasingly being acknowledged. A variety of SLM measures have already been applied at the local level, but they are rarely adequately recognised, evaluated, shared or used for decision support. WOCAT (World Overview of Technologies and Approaches) has developed an internationally recognised, standardised methodology to document and evaluate SLM technologies and approaches, including spatial distribution, allowing the sharing of SLM knowledge worldwide. The recent methodological integration into a participatory process allows now analysing and using this knowledge for decision support at the local and national level. The use of the WOCAT tools stimulates evaluation (self-evaluation as well as learning from comparing experiences) within SLM initiatives where all too often there is not only insufficient monitoring but also a lack of critical analysis. The comprehensive questionnaires and database system facilitate to document, evaluate and disseminate local experiences of SLM technologies and their implementation approaches. This evaluation process - in a team of experts and together with land users - greatly enhances understanding of the reasons behind successful (or failed) local practices. It has now been integrated into a new methodology for appraising and selecting SLM options. The methodology combines a local collective learning and decision approach with the use of the evaluated global best practices from WOCAT in a concise three step process: i) identifying land degradation and locally applied solutions in a stakeholder learning workshop; ii) assessing local solutions with the standardised WOCAT tool; iii) jointly selecting promising strategies for implementation with the help of a decision support tool. The methodology has been implemented in various countries and study sites around the world mainly within the FAO LADA (Land Degradation Assessment Project) and the EU-funded DESIRE project. Investments in SLM must be carefully assessed and planned on the basis of properly documented experiences and evaluated impacts and benefits: concerted efforts are needed and sufficient resources must be mobilised to tap the wealth of knowledge and learn from SLM successes.