399 resultados para chorionic gonadotropin
Resumo:
A method is described for monitoring the concentration of endogenous receptor-bound gonadotropin in the ovarian tissue. This involved development of a radioimmunoassay procedure, the validity of which for measuring all of the tissue-bound hormone has been established. The specificity of the method of measurement was indicated by the fact that high levels of FSH could be measured only in target tissue such as follicles, while non-target organs showed little FSH. Using this method, the amount of FSH in the non-luteal ovarian tissue of the hamster at different stages of the estrous cycle was quantitated and compared with serum FSH levels found at these times. No correlation could be found between serum and tissue FSH levels at all times. On the morning of estrus, for example, when the serum level of FSH was high, the ovarian concentration was low, and on the evening of diestrus-2 the ovary exhibited high concentration of FSH, despite the serum FSH concentration being low at this time. The highest concentration of FSH in the ovary during the cycle was found on the evening of proestrus. Although a large amount of this was found in the Graafian follicles, a considerable amount could still be found in the �growing� follicles. Ovarian FSH concentration could be considered to be a reflection of FSH receptor content, since preventing the development of FSH receptors by blocking initiation of follicular development during the cycle resulted in a decrease in the concentration of FSH in the ovary. The high concentration of FSH in the ovary seen on the evening of diestrus-2 was not influenced either by varying the concentration of estrogen or by neutralization of LH. Neutralization of FSH on diestrus-2, on the other hand, caused a drastic reduction in the ovarian LH concentration on the next day (i.e. at proestrus), thus suggesting the importance of FSH in the induction of LH receptors.
Resumo:
While the need for FSH in initiating spermatogenesis in the immature rat is well accepted, its requirement for maintenance of spermatogenesis in adulthood is questioned. In the current study, using gonadotropin antisera to neutralize specifically either endogenous FSH or LH, we have investigated the effect of either FSH or LH deprivation for a 10-day period on (i) testicular macromolecular synthesis in vitro, (ii) the activities of testicular germ cell specific LDH-X and hyaluronidase enzymes, and finally (iii) on the concentration of sulphated glycoprotein (SGP-2), one of the Sertoli cell marker proteins. Both immature (35-day-old) and adult (100-day-old) rats have been used in this study. Since LH deprivation leads to a near total blockade of testosterone production, the ability of exogenous testosterone supplementation to override the effects of LH deficiency has also been evaluated. Deprivation of either of the gonadotropins significantly affected in vitro RNA and protein synthesis by both testicular minces as well as single cell preparations. Fractionation of dispersed testicular cells preincubated with labelled precursors of RNA and protein on Percoll density gradient revealed that FSH deprivation affected specifically the rate of RNA and protein synthesis of germ cell and not Leydig cell fraction. LH but not FSH deprivation inhibited [3H]thymidine incorporation into DNA. The inhibitory effect of LH could mostly be overriden by testosterone supplementation. LDH-X and hyaluronidase activities of testicular homogenates of adult rats showed significant reduction (50%; P less than .05) following either FSH or LH deprivation. Again testosterone supplementation was able to reverse the LH inhibitory effect.
Resumo:
Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.
Resumo:
We have examined the monthly variations in sperm output and attempted to correlate the profiles of endocrine hormones secreted with the sperm counts throughout the ,year in the adult male bonnet monkey. As previously reported, there was a distinct spurt in sperm output beginning September through December months. A concomitant increase in serum testosterone and prolactin concentrations were also noted during September through November (mid and post-monsoon season). Although there was a marked increase in gonadotropin releasing hormone stimulated testosterone secretion, the peak testosterone concentrations post gonadotropin releasing hormone injection did not vary significantly (P>0.05) throughout the year. Basal serum follicle stimulating hormone concentrations did not vary significantly (P>0.05) during April to June months compared to September-November months. Serum inhibin concentration remained unaltered throughout the year, except in the month of March. The results of this study provide evidence for annual rhythms in prolactin and testosterone secretion and a distinct seasonality in the sperm output of the adult male bonnet monkey, but the pituitary responsiveness to exogenous gonadotropin releasing hormone remains unaltered throughout the year. Because of the existence of seasonality as noted in the present study, future studies which utilize the adult male bonnet monkey as an experimental model need to take into consideration the seasonal effects on reproductive function in this species.
Resumo:
While the endocrine role of oestrogen is well established, its function in follicular maturation as an autocrine or paracrine regulator is less well understood. This study was designed to delineate the requirement of oestrogen for follicular development in immature rats. Exogenous gonadotrophin (25 IU pregnant mare serum gonadotrophin (PMSG) per rat) was administered to 21- to 23-day old female rats to induce follicular growth and development. In the experimental animals, synthesis of oestrogen was blocked by implanting an Alzet pump containing the aromatase inhibitor (AI) CGS 16949A (fadrozole hydrochloride; 50 mu g/rat per day). The treatment resulted in blockade of the PMSG induced increase in both serum and intrafollicular oestrogen (>95%), thus leading to an inhibition in uterine weight increment. Compared with the controls, ovarian weight increased markedly in both the PMSG (295%)- and PMSG+AI (216%)-primed animals. There was no significant difference in either the proliferative capabilities of the ovarian granulosa cells or their responsiveness to human chorionic gonadotrophin (hCG; 200 pg/ml) and ovine FSH (20 ng/ml) between the PMSG- and PMSG+AI-treated groups. Histological examination of the ovary, however, indicated a decrease in the number of healthy antral follicles in the Al-treated group compared with the PMSG-primed animals but both the groups showed a percentage increase over the controls (PMSG, 225; PMSG+AI, 158). The responsiveness of the animals to an ovulatory dose of hCG was drastically reduced (>80% inhibition of ovulation) in the oestrogen-deprived animals; this could be overriden by exogenous administration of oestrogen. In conclusion, although blocking oestrogen synthesis in the PMSG-primed rat does not seem to alter the functional properties of the isolated granulosa cells in vitro there appears to be an effect on the number of follicles which complete maturation and are able to ovulate in vivo.
Resumo:
The relative regulatory roles of the pituitary gonadotropins, luteinizing hormone and follicle stimulating hormone in the spermatogonial proliferation has been studied using specific antibodies against these hormones in the immature rats. Immunoneutralization of luteinizing hormone for 7 days resulted in significant reduction in tetraploid cells and total absence of haploid cells, while there was a relative increase in the diploid population. This was also accomopanied by a decrease in spermatogonial proliferation as indicated by a decrease in [H-3] thymidine incorporation into DNA by purified spermatogonia. Administration bf follicle stimulating hormone als for 7 days also caused a significant decrease in the rate of spermatogonial proliferation. Withdrawal of follicle stimulating hormone led to a significant reduction in tetraploid and haploid cells However interestingly, it failed to totally abolish the appearance of these cells. Administration of testosterone (3mg/day/rat) for 2 days along with the gonadotropin a/s could partially reverse the effect on spermatogonial proliferation. It is concluded that (i) both luteinizing hormone and follicle stimulating hormone are involved in spermatogonial proliferation, (ii) lack of testosterone consequent of the neutralization of luteinizing hormone prevented the entry of spermatogonial cells into meiosis, (iii) testosterone may be involved in spermatogonial proliferation providing a mitotic signal and (v) both follicle stimulating hormone and testosterone act synergistically and lack of any one of the hormones results in impairment of spermatogonial proliferation.
Resumo:
Development of preimplantation embryos and blastocyst implantation are critical early events in the establishment of pregnancy. In primates, embryonic signals, secreted during the peri-implantation period, are believed to play a major role in the regulation of embryonic differentiation and implantation. However, only limited progress has been made in the molecular and functional characterization of embryonic signals, partly due to severe paucity of primate embryos and the lack of optimal culture conditions to obtain viable embryo development. Two embryonic (endocrine) secretions, i.e. chorionic gonadotrophin (CG) and gonadotrophin releasing hormone (GnRH) are being studied. This article reviews the current status of knowledge on the recovery and culture of embryos, their secretion of CG, GnRH and other potential endocrine signals and their regulation and physiological role(s) during the peri-implantation period in primates, including humans.
Resumo:
The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development.
Resumo:
We employed different experimental model systems to define the role of GATA4, beta-catenin, and steroidogenic factor (SF-1) transcriptional factors in the regulation of monkey luteal inhibin secretion. Reverse transcription polymerase chain reactions and western blotting analyses show high expression of inhibin-alpha, GATA4, and beta-catenin in corpus luteum (CL) of the mid-luteal phase. Gonadotropin-releasing hormone receptor antagonist-induced luteolysis model suggested the significance of luteinizing hormone (LH) in regulating these transcriptional factors. Inducible cyclic AMP early repressor mRNA expression was detected in the CL and no change was observed in different stages of CL. Following amino acid sequence analysis, interaction between SF-1 and beta-catenin in mid-stage CL was verified by reciprocal co-immunoprecipitation experiments coupled to immunoblot analysis. Electrophoretic mobility shift analysis support the role of SF-1 in regulating luteal inhibin-alpha expression. Our results suggest a possible multiple crosstalk of Wnt, cAMP, and SF-1 in the regulation of luteal inhibin secretion.
Resumo:
Background: Immunotherapy is fast emerging as one of the leading modes of treatment of cancer, in combination with chemotherapy and radiation. Use of immunotoxins, proteins bearing a cell-surface receptor-specific antibody conjugated to a toxin, enhances the efficacy of cancer treatment. The toxin Abrin, isolated from the Abrus precatorius plant, is a type II ribosome inactivating protein, has a catalytic efficiency higher than any other toxin belonging to this class of proteins but has not been exploited much for use in targeted therapy. Methods: Protein synthesis assay using (3)H] L-leucine incorporation; construction and purification of immunotoxin; study of cell death using flow cytometry; confocal scanning microscopy and sub-cellular fractionation with immunoblot analysis of localization of proteins. Results: We used the recombinant A chain of abrin to conjugate to antibodies raised against the human gonadotropin releasing hormone receptor. The conjugate inhibited protein synthesis and also induced cell death specifically in cells expressing the receptor. The conjugate exhibited differences in the kinetics of inhibition of protein synthesis, in comparison to abrin, and this was attributed to differences in internalization and trafficking of the conjugate within the cells. Moreover, observations of sequestration of the A chain into the nucleus of cells treated with abrin but not in cells treated with the conjugate reveal a novel pathway for the movement of the conjugate in the cells. Conclusions: This is one of the first reports on nuclear localization of abrin, a type II RIP. The immunotoxin mAb F1G4-rABRa-A, generated in our laboratory, inhibits protein synthesis specifically on cells expressing the gonadotropin releasing hormone receptor and the pathway of internalization of the protein is distinct from that seen for abrin.
Resumo:
The use of synthetic and non-synthetic hormones have been reported in different regions with the recommendation of different doses. The adaptability of these findings have however not been very successful due to the high cost of building and maintaining hatchery, high cost of synthetic hormone (when available) and high level manpower required. It is obvious that adaptive research in the past ten years in developing countries like Nigeria have been geared towards utilization of resources that are equally effective but cheap and ready to come by. This paper reports the utilization of the pituitary extract of bull frog (Rana adspersa) and the toad (Bufo regularis) in the induced breeding of the African catfish, Clarias gariepinus. The extraction and dosage are discussed alongside the preliminary rearing of fries in outdoor hatchery tanks. Human chorionic gonadotrophin (HCG) and Clarias pituitary extracts were used as control
Resumo:
The snakehead (Channa striata ) is a common freshwater fish species in Malaysia. Details are given of a simple technique for breeding this species, suitable for small-scale farmers practising backyard aquaculture. Two techniques were used to induce spawning - the first used water level manipulation to simulate rain and the second used injected with human chorionic gonadotropic hormone. The former, more natural, spawning technique was found to provide a viable alternative for the small-scale farmer, being much simpler than hormone injection.
Resumo:
Although spermatozoa from several species of nonhuman primates have been cryopreserved, there has been no report of success with rhesus macaque spermatozoa as judged by functional assays. Two Tris-egg yolk freezing media. TEST and TTE. which have: been successfully used for cynomolgus macaque (Macaca fascicularis) spermatozoa, were compared for cryopreservation of spermatozoa From four rhesus macaques (Macaca mulatta). The postthaw motility (percentage and duration) of spermatozoa cryopreserved in TTE was much higher than that for spermatozoa cryopreserved in TEST. The function of sperm cryopreserved in TTE was evaluated by in vitro fertilization or oocytes collected from gonadotropin-stimulated prepubertal rhesus macaques. Of the inseminated oocytes. 82 +/- 13% were fertilized and 63 +/- 22 and 39 +/- 21% of the resulting zygotes developed into morulae and blastocysts. respectively. These results indicate that rhesus macaque spermatozoa can be effectively cryopreserved in TTE medium. This finding will facilitate the application of in vivo and in vitro assisted reproductive technologies in this species. (C) 2001 Academic Press.
Resumo:
Changes of plasminogen activators (PA) during different stages of development of the corpus luteum, and their possible physiological role in luteolysis were studied in rhesus monkeys. It was demonstrated for the first time that monkey corpus luteal cells not only produce PA, but that the function of the corpus luteum is also closely related to the activity of this enzyme system. Generally, the life span for a corpus luteum in monkey is approximately 14-16 days, its demise beginning thereafter. In the present study, we found that urokinase in the corpus luteum is higher on day 5 and day 10 after human chorionic gonadotrophin injection, while the tissue type (t) PA is mainly produced on day 13 when luteolysis may take place. Progesterone production remained high on day 5 and day 10 and decreased dramatically from day 13, indicating the important role of tPA but not urokinase (u) PA in suppressing luteal function. When purified tPA (but not uPA) monoclonal antibody was added to luteal cell culture to neutralize endogenously produced tPA activity, progesterone production in the cells was increased significantly. Interestingly, prolactin alone was capable of increasing PA production by luteal cells; prolactin together with luteinizing hormone, however, had a synergistic luteotrophic effect.
Resumo:
Epinephelus coioides (family serranidae) is protogynous. This species is one of the most important fishes in food chain of marine proteins of persian Gulf. Therefore knowing about the reproductive biology and physiology of this species is an important role on aquaculture procedures. Monthly samples of Epinephelus coioides were obtained in khozestan Bahrekan province from 2001 to 2002 for annual variation of base line of reproductive hormone. The hormones such as: 17-B estradiol, Testosteron, Progesterone, Gonadotropin I ,II GTHI, II) and cortisol have assayed and also different stages of gonads from the histological point of view were studied by light and electron microscope. Aditional to morphometric and fecundity measurements, the important factors such as : Gonadosomatic index (GSI) Hepatosomotic index (HSI) and Condition factor (KF) were also studied. Environmental factors such as temperature, salinity, photoperiod and pH were analyzed for the determination of effective factors responsible for the changes of reproductive cycles. The flactmation of estroid hormones and gonadotropines show a significant variation in different stages of maturation, e.g 17-B estradiol's concentration in the third stages, GTH II in fourth stages of sexual maturation or final oocyte maturation, plasma Testosteron in post ovulation and Progesterone during maturation indicates the highest levels of above mentioned hormones. The total calcium concentration was high in all year. calcium concentration was correlated with GTH II synthesis and increases with GTH II in June. 17-B estradiol concentration was also correlated with GSI. The high concentration of cortisol throughout the year was an index of stress and development of ovary maturational processes. This species was protogynous synchronous hermaphrodites , and belongs to annual spawning species, being monandric. The sexual transition was found to occure in individuals of 51.2- 105 cm in length. GSI and HSI level confirms the time of spawning period is in April- June. Electrone microscopic studies of gonad tissues showed some changes in mitochondria and endoplasmic reticulum in the post ovulation, maturation and post spawning periods. During the monthly sampling the biochemistry of tissues variations indicated decrease in protein and lipid content, but an increase in water content of spawning fishes which was correlated to the maturation of Epinephelus coioides . sex ratio indicative of higher frequences of females to males during monthly sampling periods. The females were smaller than males in sizes, therefore the females lived in 8-15m depth, but males were living in upper limits of depth. The results indicated that the temperature was the most effective parameter in reproductive cycle of Epinephelus coioides and the mean 24°c was a convenient temperature for spawning. Photoperiod was the second effective. factor on the reproductive cycle for this species. It seemed that the increase in the photoperiod between January to May caused a development of the oocyte. Regarding to the results of this research, it seems that the period of spawning in Epinephelus coioides is in May- June and the aquaculture procedure of Epinephelus coioides could be performed in the above mentioned periods.