895 resultados para cellular nucleic acid-binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seven double cysteine mutants of maltose binding protein (MBP) were generated with one each in the active cleft at position 298 and the second cysteine distributed over both domains of the protein. These cysteines were spin labeled and distances between the labels in biradical pairs determined by pulsed double electron-electron resonance (DEER) measurements. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structure of MBP without maltose and were found to be in excellent agreement. MBP is in a molten globule state at pH 3.3 and is known to still bind its substrate maltose. The nitroxide spin label was sufficiently stable under these conditions. In preliminary experiments, DEER measurements were carried out with one of the mutants yielding a broad distance distribution as was to be expected if there is no explicit tertiary structure and the individual helices pointing into all possible directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin like growth factor binding protein 4 (IGFBP4) regulates growth and development of tissues and organs by negatively regulating IGF signaling. Among most cancers, IGFBP4 has growth inhibitory role and reported as a down-regulated gene, except for renal cell carcinoma, wherein IGFBP4 promotes tumor progression. IGFBP4 expression has been shown to be higher in increasing grades of astrocytoma. However, the functional role of IGFBP4 in gliomas has not been explored. Surgical biopsies of 20 normal brain and 198 astrocytoma samples were analyzed for IGFBP4 expression by qRT-PCR. Highest expression of IGFBP4 mRNA was seen in GBM tumors compared to control brain tissues (median log2 of 2.035, p < 0.0001). Immunohistochemical analysis of 53 tissue samples revealed predominant nuclear staining of IGFBP4, seen maximally in GBMs when compared to DA and AA tumors (median LI = 29.12 +/- A 16.943, p < 0.001). Over expression of IGFBP4 in U343 glioma cells resulted in up-regulation of molecules involved in tumor growth, EMT and invasion such as pAkt, pErk, Vimentin, and N-cadherin and down-regulation of E-cadherin. Functionally, IGFBP4 over expression in these cells resulted in increased proliferation, migration and invasion as assessed by MTT, transwell migration, and Matrigel invasion assays. These findings were confirmed upon IGFBP4 knockdown in U251 glioma cells. Our data suggest a pro-tumorigenic role for IGFBP4 in glioma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-stranded DNA binding proteins (SSBs) are vital in all organisms. SSBs of Escherichia coli (EcoSSB) and Mycobacterium tuberculosis (MtuSSB) are homotetrameric. The N-terminal domains (NTD) of these SSBs (responsible for their tetramerization and DNA binding) are structurally well defined. However, their C-terminal domains (CTD) possess undefined structures. EcoSSB NTD consists of beta 1-beta 1'-beta 2-beta 3-alpha-beta 4-beta 45(1)-beta 45(2)-beta 5 secondary structure elements. MtuSSB NTD includes an additional beta-strand (beta 6) forming a novel hook-like structure. Recently, we observed that MtuSSB complemented an E. coli Delta ssb strain. However, a chimeric SSB (m beta 4-beta 5), wherein only the terminal part of NTD (beta 4-beta 5 region possessing L-45 loop) of EcoSSB was substituted with that from MtuSSB, failed to function in E. coli in spite of its normal DNA binding and oligomerization properties. Here, we designed new chimeras by transplanting selected regions of MtuSSB into EcoSSB to understand the functional significance of the various secondary structure elements within SSB. All chimeric SSBs formed homotetramers and showed normal DNA binding. The m beta 4-beta 6 construct obtained by substitution of the region downstream of beta 5 in m beta 4-beta 5 SSB with the corresponding region (beta 6) of MtuSSB complemented the E. coli strain indicating a functional interaction between the L-45 loop and the beta 6 strand of MtuSSB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NF kappa B pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NF kappa B-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-stranded DNA binding protein (Ssb) of Deinococcus radiodurans comprises N- and C-terminal oligonucleotide/oligosaccharide binding (OB) folds connected by a beta hairpin connector. To assign functional roles to the individual OB folds, we generated three Ssb variants: Ssb(N) (N-terminal without connector), Ssb(NC) (N-terminal with connector) and Ssb(C) (C-terminal), each harboring one OB fold. Both Ssb(N) and Ssb(NC) displayed weak single-stranded DNA (ssDNA) binding activity, compared to the full-length Ssb (Ssb(FL)). The level of ssDNA binding activity displayed by SsbC was intermediate between Ssb(FL) and Ssb(N). Ssb(C) and Ssb(FL) predominantly existed as homo-dimers while Ssb(NC)/Ssb(N) formed different oligomeric forms. In vitro, Ssb(NC) or Ssb(N) formed a binary complex with Ssb(C) that displayed enhanced ssDNA binding activity. Unlike Ssb(FL), Ssb variants were able to differentially modulate topoisomerase-I activity, but failed to stimulate Deinococcal RecA-promoted DNA strand exchange. The results suggest that the C-terminal OB fold is primarily responsible for ssDNA binding. The N-terminal OB fold binds weakly to ssDNA but is involved in multimerization. (C) 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.

RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.

Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed.