955 resultados para brown rot
Resumo:
This is a photo of Brown's Guif Shop in Cheraw, S.C. The building was designed by V. H. Kendell, Jr, the contractor was H. J. Roshing, and the building was completed in April 1952.
Resumo:
Introdução: O síndrome patelo-femural é uma das disfunções músculo-esqueléticas mais comuns ao nível do joelho. É de etiologia multifatorial, sendo a rotação lateral da tíbia um dos fatores contribuintes, sendo que pode potenciar alterações da biomecânica da articulação patelo-femural por aumentar as forças de reação sobre a articulação. Brian Mulligan sugere que a técnica para a correção da rotação lateral da tíbia pode ser benéfica no alívio da dor e no aumento da amplitude de flexão do joelho, em pacientes com síndrome patelo-femural, apesar da evidência acerca da efetividade desta técnica ser ainda escassa. Objetivo: Avaliar os efeitos da técnica de mobilização com movimento de rotação medial da tíbio-femural com flexão do joelho, ao nível da intensidade da dor e da amplitude de movimento de flexão do joelho, durante o agachamento, em indivíduos com síndrome patelo-femural. Métodos: Estudo experimental, com uma amostra constituída por 20 estudantes universitários, do género feminino, com síndrome patelo-femural e dor ao agachamento bilateral. Estes foram distribuídos aleatoriamente por dois grupos: experimental (intervenção com técnica de mobilização com movimento) e placebo (intervenção placebo). Foram avaliadas a amplitude de flexão do joelho com um goniómetro eletrónico (Biometrics®) e a intensidade de dor com a Escala Visual Analógica, durante o agachamento bilateral, antes e imediatamente após as respetivas intervenções. O nível de significância foi de 0,05. Resultados: A realização da Análise da Covariância revelou que, relativamente à intensidade da dor, foi possível constatar que existiram diferenças significativas entre os dois grupos (p<0,001). Entre a avaliação inicial e a final, o grupo experimental diminuiu mais 2,1cm na Escala Visual Analógica do que o grupo placebo. Em relação à avaliação da amplitude articular, foi possível constatar que, existiram diferenças significativas, entre os dois grupos (p=0,004). Entre a avaliação inicial e a final, o grupo experimental teve mais 8,6º de aumento na amplitude articular do que o grupo placebo. Conclusão: Para indivíduos com síndrome patelo-femural, a técnica de mobilização com movimento para correção da rotação lateral da tíbia, parece ser benéfica no alívio da dor e no ganho de amplitude de flexão do joelho, analisando o movimento de agachamento bilateral.
Resumo:
Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.
Resumo:
On the basis of the experiments carried out over various years, it was concluded that (1) grayling Thymallus thymallus and brown trout Salmo trutta are resistant to temperature-induced sex reversal at ecologically relevant temperatures, (2) environmental sex reversal is unlikely to cause the persistent sex ratio distortion observed in at least one of the study populations and (3) sex-specific tolerance of temperature-related stress may be the cause of distorted sex ratios in populations of T. thymallus or S. trutta.
Resumo:
Predicting progeny performance from parental genetic divergence can potentially enhance the efficiency of supportive breeding programmes and facilitate risk assessment. Yet, experimental testing of the effects of breeding distance on offspring performance remains rare, especially in wild populations of vertebrates. Recent studies have demonstrated that embryos of salmonid fish are sensitive indicators of additive genetic variance for viability traits. We therefore used gametes of wild brown trout (Salmo trutta) from five genetically distinct populations of a river catchment in Switzerland, and used a full factorial design to produce over 2,000 embryos in 100 different crosses with varying genetic distances (FST range 0.005-0.035). Customized egg capsules allowed recording the survival of individual embryos until hatching under natural field conditions. Our breeding design enabled us to evaluate the role of the environment, of genetic and nongenetic parental contributions, and of interactions between these factors, on embryo viability. We found that embryo survival was strongly affected by maternal environmental (i.e. non-genetic) effects and by the microenvironment, i.e. by the location within the gravel. However, embryo survival was not predicted by population divergence, parental allelic dissimilarity, or heterozygosity, neither in the field nor under laboratory conditions. Our findings suggest that the genetic effects of inter-population hybridization within a genetically differentiated meta-population can be minor in comparison to environmental effects.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-
Resumo:
Dr. Brown, Professor of Philosophy, speaking with a student.