923 resultados para boundary integral equation method
Resumo:
A simplified perturbational analysis is employed, together with the application of Green's theorem, to determine the first-order corrections to the reflection and transmission coefficients in the problem of diffraction of surface water waves by a nearly vertical barrier in two basically important cases: (i) when the barrier is partially immersed and (ii) when the barrier is completely submerged. The present analysis produces the desired results fairly easily and relatively quickly as compared with the known integral equation approach to this class of diffraction problems.
Resumo:
A complete analytical solution is obtained, by using an integral transform method, for the porous-wavemaker problem, when the effect of surface tension is taken into account on the free surface of water of finite-depth in which surface waves are produced by small horizontal oscillations of a porous vertical plate. The final results are expressed in the form of convergent integrals as well as series and known results are reproduced when surface tension is neglected.
Resumo:
An application of direct methods to dynamic security assessment of power systems using structure-preserving energy functions (SPEF) is presented. The transient energy margin (TEM) is used as an index for checking the stability of the system as well as ranking the contigencies based on their severity. The computation of the TEM requires the evaluation of the critical energy and the energy at fault clearing. Usually this is done by simulating the faulted trajectory, which is time-consuming. In this paper, a new algorithm which eliminates the faulted trajectory estimation is presented to calculate the TEM. The system equations and the SPEF are developed using the centre-of-inertia (COI) formulation and the loads are modelled as arbitrary functions of the respective bus voltages. The critical energy is evaluated using the potential energy boundary surface (PEBS) method. The method is illustrated by considering two realistic power system examples.
Resumo:
In the present study, a lug joint fitted with an interference fit (oversized) pin is considered with radial through cracks situated at diametrically opposite points perpendicular to the loading direction. A finite element contact stress algorithm is developed with linear elastic assumptions to deal with varying partial contact/separation at the pin-plate interface using a marching solution. Stress Intensity Factor (SIF) at the crack tips is evaluated using the Modified Crack Closure Integral (MCCI) method. The effect of change in crack length and edge distance on the load-contact relation, SIFs and stress distributions are studied. A rigorous plane stress elasticity solution of the pin-plate interface at the crack mouth confirmed the existence of the stress concentration leading to a local peak in the radial stress at the crack mouth and provided a method of estimating it quantitatively. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
In this paper, an improved probabilistic linearization approach is developed to study the response of nonlinear single degree of freedom (SDOF) systems under narrow-band inputs. An integral equation for the probability density function (PDF) of the envelope is derived. This equation is solved using an iterative scheme. The technique is applied to study the hardening type Duffing's oscillator under narrow-band excitation. The results compare favorably with those obtained using numerical simulation. In particular, the bimodal nature of the PDF for the response envelope for certain parameter ranges is brought out.
Resumo:
This paper presents recursive algorithms for fast computation of Legendre and Zernike moments of a grey-level image intensity distribution. For a binary image, a contour integration method is developed for the evaluation of Legendre moments using only the boundary information. A method for recursive calculation of Zernike polynomial coefficients is also given. A square-to-circular image transformation scheme is introduced to minimize the computation involved in Zernike moment functions. The recursive formulae can also be used in inverse moment transforms to reconstruct the original image from moments. The mathematical framework of the algorithms is given in detail, and illustrated with binary and grey-level images.
Resumo:
The problem of electromagnetic wave propagation in a rectangular waveguide containing a thick iris is considered for its complete solution by reducing it to two suitable integral equations, one of which is of the first kind and the other is of the second kind. These integral equations are solved approximately, by using truncated Fourier series for the unknown functions. The reflection coefficient is computed numerically from the two integral equation approaches, and almost the same numerical results are obtained. This is also depicted graphically against the wave number and compared with thin iris results, which are computed by using complementary formulations coupled with Galerkin approximations. While the reflection coefficient for a thin iris steadily increases with the wave number, for a thick iris it fluctuates and zero reflection occurs. The number of zeros of the reflection coefficient for a thick iris increases with the thickness. Thus a thick iris becomes completely transparent for some discrete wave numbers. This phenomenon may be significant in the modelling of rectangular waveguides.
Resumo:
This is an introduction to the theory of interacting Brownian particles, as applied to charge-stabilised colloidal suspensions near their equilibrium liquid-solid transition. The density functional approach to the statics of the transition is reviewed briefly, and the generalised Langevin equation method for the dynamics presented in detail. Work with A.V. Indrani [1] on a self-consistent approach for calculating the excess single-particle friction is presented, which explains the observed [2] ''universal'' suppression of self-diffusion at freezing as a consequence of the universal structure-factor height at this transition. Criticisms, open questions, and challenges to theory are discussed.
Resumo:
The generalised Langevin equation method for the dynamics of interacting colloids presented in my previous lecture is extended here to the case of a sheared suspension. A calculation of shear-dependent diffusivities using these methods is found to account for puzzling observations in experiments and simulations. The limitations of the method are discussed, and important unresolved questions presented. This lecture summarises work done in collaboration with A.V. Indrani [1].
Resumo:
Pin loaded lug joints fitted with different types of pins are analysed in the presence of cracks at pin-plate interface. An algorithm for finite element contact stress analysis of joints developed earlier to deal with varying partial contact/separation at the pin-plate interface using a marching solution is used in the present analysis. Stress Intensity Factors (SIF) at the crack tips are evaluated using Modified Crack Closure Integral (MCCI) method within the realm of Linear Elastic Fracture Mechanics (LEFM) assumptions. A comparison of fatigue crack growth lives between interference and push fit pin joints is carried out using these SIF's. Results from a finite element analysis on a push fit pin joint are used to fit experimental fatigue crack growth data.
Resumo:
In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first-order and second-order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth-order RungeKutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two-dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side-by-side. Results of these simulations were extensively compared with the previous numerical data. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
With the advances of techniques for RCS reduction, it has become practical to develop aircraft which are invisible to modern day radars. In order to detect such low visible targets it is necessary to explore other phenomenon that contributes to the scattering of incident electromagnetic wave. It is well known from the developments from the clear air scattering using RASS induced acoustic wave could be used to create dielectric constant fluctuation. The scattering from these fluctuations rather than from the aircraft have been observed to enhance the RCS of clear air, under the condition when the incident EM wave is half of the acoustic wave, the condition of Bragg scattering would be met and RCS would be enhanced. For detecting low visibility targets which are at significant distance away from the main radar, inducement of EM fluctuation from acoustic source collocated with the acoustic source is infeasible. However the flow past aircraft produces acoustic disturbances around the aircraft can be exploited to detect low visibility targets. In this paper numerical simulation for RCS enhancement due to acoustic disturbances is presented. In effect, this requires the solution of scattering from 3D inhomogeneous complex shaped bodies. In this volume surface integral equation (VSIE) is used to compute the RCS from fluctuation introduced through the acoustic disturbances. Though the technique developed can be used to study the scattering from radars of any shape and acoustic disturbances of any shape. For illustrative condition, enhancement due to the Bragg scattering are shown to improve the RCS by nearly 30dB, for air synthetic sinusoidal acoustic variation profile for a spherical scattering volume
Resumo:
In directional solidification of binary eutectics, it is often observed that two-phase lamellar growth patterns grow tilted with respect to the direction z of the imposed temperature gradient. This crystallographic effect depends on the orientation of the two crystal phases alpha and beta with respect to z. Recently, an approximate theory was formulated that predicts the lamellar tilt angle as a function of the anisotropy of the free energy of the solid(alpha)-solid(beta) interphase boundary. We use two different numerical methods-phase field (PF) and dynamic boundary integral (BI)-to simulate the growth of steady periodic patterns in two dimensions as a function of the angle theta(R) between z and a reference crystallographic axis for a fixed relative orientation of alpha and beta crystals, that is, for a given anisotropy function (Wulff plot) of the interphase boundary. For Wulff plots without unstable interphase-boundary orientations, the two simulation methods are in excellent agreement with each other and confirm the general validity of the previously proposed theory. In addition, a crystallographic ``locking'' of the lamellae onto a facet plane is well reproduced in the simulations. When unstable orientations are present in the Wulff plot, it is expected that two distinct values of the tilt angle can appear for the same crystal orientation over a finite theta(R) range. This bistable behavior, which has been observed experimentally, is well reproduced by BI simulations but not by the PF model. Possible reasons for this discrepancy are discussed.
Resumo:
The problem of intercepting a maneuvering target at a prespecified impact angle is posed in nonlinear zero-sum differential games framework. A feedback form solution is proposed by extending state-dependent Riccati equation method to nonlinear zero-sum differential games. An analytic solution is obtained for the state-dependent Riccati equation corresponding to the impact-angle-constrained guidance problem. The impact-angle-constrained guidance law is derived using the states line-of-sight rate and projected terminal impact angle error. Local asymptotic stability conditions for the closed-loop system corresponding to these states are studied. Time-to-go estimation is not explicitly required to derive and implement the proposed guidance law. Performance of the proposed guidance law is validated using two-dimensional simulation of the relative nonlinear kinematics as well as a thrust-driven realistic interceptor model.
Resumo:
We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP: PS size ratios, xi = 0.14 and 2.76 (where, xi = M-g/M-m, M-g and M-m being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with xi = 0.14 could be modeled reasonably well, while the structure of blends with xi = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with xi = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with xi = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well. (C) 2015 AIP Publishing LLC.