959 resultados para bone formation
Resumo:
OBJECTIVE Crohn's disease is a chronic inflammatory process that has recently been associated with a higher risk of early implant failure. Herein we provide information on the impact of colitis on peri-implant bone formation using preclinical models of chemically induced colitis. METHODS Colitis was induced by intrarectal instillation of 2,4,6-trinitro-benzene-sulfonic-acid (TNBS). Colitis was also induced by feeding rats dextran-sodium-sulfate (DSS) in drinking water. One week after disease induction, titanium miniscrews were inserted into the tibia. Four weeks after implantation, peri-implant bone volume per tissue volume (BV/TV) and bone-to-implant contacts (BIC) were determined by histomorphometric analysis. RESULTS Cortical histomorphometric parameters were similar in the control (n = 10), DSS (n = 10) and TNBS (n = 8) groups. Cortical BV/TV was 92.2 ± 3.7%, 92.0 ± 3.0% and 92.6 ± 2.7%. Cortical BIC was 81.3 ± 8.8%, 83.2 ± 8.4% and 84.0 ± 7.0%, respectively. No significant differences were observed when comparing the medullary BV/TV and BIC (19.5 ± 6.4%, 16.2 ± 5.6% and 15.4 ± 9.0%) and (48.8 ± 12.9%, 49.2 ± 6.2 and 41.9 ± 11.7%), respectively. Successful induction of colitis was confirmed by loss of body weight and colon morphology. CONCLUSIONS The results suggest bone regeneration around implants is not impaired in chemically induced colitis models. Considering that Crohn's disease can affect any part of the gastrointestinal tract including the mouth, our model only partially reflects the clinical situation.
Resumo:
OBJECTIVES Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM. MATERIALS AND METHODS Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed. RESULTS Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05). CONCLUSIONS The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects. CLINICAL RELEVANCE These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.
Resumo:
OBJECTIVE The first objective of this pilot study was to evaluate the impact of the hydrophilicity on the early phases of osseointegration. The second objective was to compare two hydrophilic implant surfaces with different geometries, surface roughness, and technologies achieving hydrophilicity. MATERIAL AND METHODS Twelve weeks after extraction, all four quadrants of nine minipigs received three dental implants, alternating between hydrophilic microrough surfaces (INICELL and SLActive) and a conventional hydrophobic microrough surface. After 5, 10, and 15 days of submerged healing, ground sections were prepared and subjected to histologic and histomorphometric analysis. RESULTS The histologic analysis revealed a similar healing pattern among the hydrophilic and hydrophobic implant surfaces, with extensive bone formation occurring between day 5 and day 10. With BIC values of greater than 50% after 10 days, all examined surfaces indicated favorable osseointegration at this very early point in healing. At day 15, the mean new bone-to-implant contact (newBIC) of one hydrophilic surface (INICELL; 55.8 ± 14.4%) was slightly greater than that of the hydrophobic microrough surface (40.6 ± 20.2%). At day 10 and day 15, an overall of 21% of the implants had to be excluded from analysis due to inflammations primarily caused by surgical complications. CONCLUSION Substantial bone apposition occurs between day 5 and day 10. The data suggest that the hydrophilic surface can provoke a slight tendency toward increased bone apposition in minipigs after 15 days. A direct comparison of two hydrophilic surfaces with varying geometries is of limited relevance.
Resumo:
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
One of the most promising applications for the restoration of small or moderately sized focal articular lesions is mosaicplasty (MP). Although recurrent hemarthrosis is a rare complication after MP, recently, various strategies have been designed to find an effective filling material to prevent postoperative bleeding from the donor site. The porous biodegradable polymer Polyactive (PA; a polyethylene glycol terephthalate - polybutylene terephthalate copolymer) represents a promising solution in this respect. A histological evaluation of the longterm PA-filled donor sites obtained from 10 experimental horses was performed. In this study, attention was primarily focused on the bone tissue developed in the plug. A computer-assisted image analysis and quantitative polarized light microscopic measurements of decalcified, longitudinally sectioned, dimethylmethylene blue (DMMB)- and picrosirius red (PS) stained sections revealed that the coverage area of the bone trabecules in the PA-filled donor tunnels was substantially (25%) enlarged compared to the neighboring cancellous bone. For this quantification, identical ROIs (regions of interest) were used and compared. The birefringence retardation values were also measured with a polarized light microscope using monochromatic light. Identical retardation values could be recorded from the bone trabeculae developed in the PA and in the neighboring bone, which indicates that the collagen orientation pattern does not differ significantly among these bone trabecules. Based on our new data, we speculate that PA promotes bone formation, and some of the currently identified degradation products of PA may enhance osteo-conduction and osteoinduction inside the donor canal.
Resumo:
Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice.
Resumo:
AIM Vitamin D deficiency is considered to diminish bone regeneration. Yet, raising the serum levels takes months. A topic application of the active vitamin D metabolite, calcitriol, may be an effective approach. Thus, it becomes important to know the effect of vitamin D deficiency and local application on alveolar bone regeneration. MATERIAL AND METHODS Sixty rats were divided into three groups; two vitamin depletion groups and a control group. Identical single defects (2 mm diameter) were created in the maxilla and mandible treated with calcitriol soaked collagen in one deficiency group while in the other two groups not. Histomorphometric analysis and micro CTs were performed after 1 and 3 weeks. Serum levels of 25(OH)D3 and PTH were determined. RESULTS Bone formation rate significantly increased within the observation period in all groups. Bone regeneration was higher in the maxilla than in the mandible. However, bone regeneration was lower in the control group compared to vitamin depletion groups, with no significant effects by local administration of calcitriol (micro CT mandible p = 0.003, maxilla p < 0.001; histomorphometry maxilla p = 0.035, mandible p = 0.18). CONCLUSION Vitamin D deficiency not necessarily impairs bone regeneration in the rat jaw and a single local calcitriol application does not enhance healing.
Resumo:
Osteoclast research has an exciting history and a challenging future. More than 3 decades ago, it became evident that bone-resorbing osteoclasts are of hematopoietic origin and are ultimately linked to the "basic multicellular unit," where they team up with the other cell types, including bone-forming osteoblasts. Since 2 decades, we have learned about the signaling pathways controlling genes relevant for osteoclastogenesis and bone resorption. It took another decade until the hypothesized "osteoclast differentiation" factor was discovered and was translated into an approved pharmacologic strategy. Here, the focus is on another molecular target, cathepsin K, a cysteine protease being released by the osteoclast into the resorption compartment. Genetic deletion and pharmacological blocking of cathepsin K reduces bone resorption but with ongoing bone formation. This observation not only holds great promise to become a new pharmacologic strategy, but it also provides new insights into the coordinated work of cells in the "basic multicellular unit" and thus, bridges the history and future of osteoclast research. This article is a short primer on osteoclast biology for readers of the special issue on odanacatib, a cathepsin K inhibitor.
Resumo:
AIM Pharmacological inhibitors of prolyl hydroxylases, also termed hypoxia-mimetic agents (HMAs), when repeatedly injected can support angiogenesis and bone regeneration. However, the possible role of HMA loaded onto bone substitutes to support angiogenesis and bone regeneration under diabetic condition is unknown. The capacity of HMA loaded onto deproteinized bovine bone mineral (DBBM) to support angiogenesis and bone formation was examined in diabetic Wistar rats. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin. The HMA dimethyloxalylglycine (DMOG) and desferrioxamine (DFO) were lyophilized onto DBBM. Calvarial defects were created with a trephine drill and filled with the respective bone substitutes. After 4 weeks of healing, the animals were subjected to histological and histomorphometric analysis. RESULTS In this report, we provide evidence that DMOG loaded onto DBBM can support angiogenesis in vivo. Specifically, we show that DMOG increased the vessel area in the defect site to 2.4% ± 1.3% compared with controls 1.1% ± 0.48% (P = 0.012). There was a trend toward an increased vessel number in the defect site with 38.6 ± 17.4 and 31.0 ± 10.3 in the DMOG and the control group (P = 0.231). The increase in angiogenesis, however, did not translate into enhanced bone formation in the defect area with 9.2% ± 7.1% and 8.4% ± 5.6% in DMOG and control group, respectively. No significant changes were caused by DFO. CONCLUSIONS The results suggest that DMOG loaded onto DBBM can support angiogenesis, but bone formation does not increase accordingly in a type 1 diabetic rat calvarial defect model at the indicated time point.
Resumo:
Objective Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Methods Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. Results HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. Conclusions HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats.
Resumo:
Introduction: Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrose. It is hence appealing to develop biomaterials that can enhance bone formation. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osteoinduction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Methods: Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs in a co-culture set-up. MSCs were kept in 1:control medium, 2:osteogenic medium+alginate control, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, Alkaline Phosphatase (ALP) assay and histological staining were performed. Results: Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51P to the co-cultures induced mineralization of MSCs, however a reduced ALP was observed. Conclusion: We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.
Resumo:
Osteal macrophages (OsteoMacs) are a special subtype of macrophage residing in bony tissues. Interesting findings from basic research have pointed to their vast and substantial roles in bone biology by demonstrating their key function in bone formation and remodeling. Despite these essential findings, much less information is available concerning their response to a variety of biomaterials used for bone regeneration with the majority of investigation primarily focused on their role during the foreign body reaction. With respect to biomaterials, it is well known that cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials. Here they demonstrate extremely plastic phenotypes with the ability to differentiate towards classical M1 or M2 macrophages, or subsequently fuse into osteoclasts or multinucleated giant cells (MNGCs). These MNGCs have previously been characterized as foreign body giant cells and associated with biomaterial rejection, however more recently their phenotypes have been implicated with wound healing and tissue regeneration by studies demonstrating their expression of key M2 markers around biomaterials. With such contrasting hypotheses, it becomes essential to better understand their roles to improve the development of osteo-compatible and osteo-promotive biomaterials. This review article expresses the necessity to further study OsteoMacs and MNGCs to understand their function in bone biomaterial tissue integration including dental/orthopedic implants and bone grafting materials.
Resumo:
Advanced-stage prostate cancer (PCa) patients are often diagnosed with bone metastases. Bone metastases remain incurable and therapies are palliative. PCa cells prevalently cause osteoblastic lesions, characterized by an excess of bone formation. The prevailing concept indicates that PCa cancer cell secrete an excess of paracrine factors stimulating osteoblasts directly or indirectly, thereby leading to an excess of bone formation. The exact mechanisms by which bone formation stimulates PCa cell growth are mostly elusive. In this review, the mechanisms of PCa cancer cell osteotropism, the cancer cell-induced response within the bone marrow/bone stroma, and therapeutic stromal targets will be summarized.
Resumo:
Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^