610 resultados para biocompatible
Resumo:
Introduction: The endodontic regenerative procedure (ERP), which is an alternative to calcium hydroxide induced apexification, involves the use of a triple antibiotic paste (TAP) as a dressing material. The aim of this study was to evaluate the response of rat subcutaneous tissue to implanted polyethylene tubes that were filled with TAP or calcium hydroxide. Methods: Thirty rats received 2 individual implants of polyethylene tubes filled with TAP or calcium hydroxide paste (CHP) and another empty tube as a control. Thirty additional rats received 2 individual implants consisting of polyethylene tubes filled with dressing material carriers (macrogol and propylene glycol) and a sham procedure. After 7, 15, 30, 60, and 90 days, 12 animals were euthanized, and the tubes and surrounding tissue were removed and processed for histology by using glycol methacrylate and stained with hematoxylin and eosin. The histological score ranged from 0 to 3 depending on the content of inflammatory cells; the fibrous capsule was considered thin or thick, and necrosis and calcification were recorded as present or absent. The results were analyzed using the Kruskal-Wallis test. Results: Both dressing materials induced moderate reactions at 7 and 15 days. These reactions were similar to the control (P>.05) and reduced in intensity (to mild) from day 30 onward (P>.05). The carriers did not interfere with the reaction of the dressing materials. Conclusions: TAP and CHP were biocompatible over the different experimental periods examined. (J Endod 2012;38:91-94)
Resumo:
Introduction: A new cement (CER; Cimento Endodontico Rapido or fast endodontic cement) has been developed to improve handling properties. It is a formulation that has Portland cement in gel. However, there had not yet been any study evaluating its biologic properties. The purpose of this study was to evaluate the rat subcutaneous tissue response to CER and Angelus MTA. Methods: The materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for 7, 30, and 60 days. The specimens were prepared to be stained with hematoxylin-eosin or von Kossa or not stained for polarized light. The presence of inflammation, predominant cell type, calcification, and thickness of fibrous connective tissue were recorded. Scores were defined as follows: 0, none or few inflammatory cells, no reaction; 1, <25 cells, mild reaction; 2, 25-125 cells, moderate reaction; 3, >125 cells, severe reaction. Fibrous capsule was categorized as thin when thickness was <150 mu m and thick at >150 mu m. Necrosis and formation of calcification were both recorded. Results: Both materials Angelus MTA and CER caused moderate reactions at 7 days, which decreased with time. The response was similar to the control at 30 and 60 days with Angelus MTA and CER, characterized by organized connective tissue and presence of some chronic inflammatory cells. Mineralization and granulations birefringent to polarized light were observed with both materials. Conclusions: It was possible to conclude that CER was biocompatible and stimulated mineralization. (J Endod 2009,35:1377-1380)
Resumo:
The aim of this study was to evaluate the rat subcutaneous tissue response to implanted polyethylene tubes filled with Endo-CPM-Sealer (Portland Cement Modified Sealer) (EGEO S.R.L., Buenos Aires, Argentina) compared with Sealapex (SybronEndo, Glendora, CA) and Angelus MTA (Angelus, Londrina, Brazil). These materials were placed in polyethylene and dentin tubes and implanted into dorsal connective tissue of Wistar rats for 7, 15, 30, 60, and 90 days. The specimens were prepared to be stained with hematoxylin and eosin or Von Kossa or not stained for polarized light. Qualitative and quantitative evaluations of the reaction were performed. Both materials caused mild to moderate reactions at 7 days that decreased with time. The response was similar to the control on the 30th day with Endo-CPM-Sealer and Angelus MTA and on the 60th day with Sealapex. Mineralization and granulations birefringent to the polarized light were observed with all materials. it was possible to conclude that Endo-CPM-Sealer was biocompatible and stimulated mineralization. (J Endod 2009;35:256-260)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. To evaluate the response of the pulpo-dentin complex following application of a resin-modified glass-ionomer cement or an adhesive system in deep cavities performed in human teeth.Methods. Deep class V cavities were prepared on the buccal surface of 26 premolars. In Group I the cavity walls (dentin) and enamel were conditioned with 32% phosphoric acid and the dentin adhesive system One Step (Bisco, Inc., Itasca, IL, USA) was applied. In Groups 2 and 3, before total etching and application of bonding agent, the cavity floor was lined with the resin-modified glass-ionomer cement-Vitrebond (3M ESPE Dental Products Division, St. Paul, MN, USA) or the calcium hydroxide cement-Dycal (control group, Dentsply, Mildford, DE, USA), respectively. The cavities were restored using light-cured Z-100 composite resin (3M ESPE). The teeth were extracted between 5 and 30 days and prepared for microscopic assessment. Serial sections were stained with H/E, Masson's trichrome, and Brown and Brenn techniques.Results. In Group 1, the inflammatory response was more evident than in Groups 2 and 3. Diffusion of dental material components across dentinal tubules was observed only in Group 1, in which the intensity of the pulp response increased as the remaining dentin thickness decreased. Bacteria were evidenced in the lateral walls of two samples (Group 2) which exhibited no inflammatory response or tissue disorganization.Conclusions. Based on the experimental conditions, it was concluded total acid etching followed by application of One Step bonding agent cannot be recommended as adequate procedures. In this clinical condition the cavity walls should be lined with a biocompatible dental material, such as Vitrebond or Dycal. 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The aim of this in vivo study was to evaluate the biocompatibility of three current bonding agents and calcium hydroxide cement. Sixty polyethylene tubes filled with the following materials: Group 1: Prime & Bond NT (PB - Dentsply, US; Group 2: Bond 1 (BO - Jeneric/Pentron, US); Group 3: Optibond Solo (OP - Kerr, US); and Group 4 (control): calcium hydroxide cement - Dycal (CH - Dentsply, US) were implanted into the connective tissue of 30 rats. After 15, 30 and 60 days, the implants were excised and the animals sacrificed. The biopsies were immersed in Karnovsky (pH, 7.2) fixative solution for 48 hours, and processed using routine histological technique. Six-micron-thick sections were cut and stained with hematoxilin and eosin and Masson's trichome technique. Microscopic evaluation was used to compare the connective tissue reactions caused by the experimental and control materials adjacent to the tube opening. At 15 days, the experimental and control materials triggered a moderate to intense inflammatory response which gave rise to a thick capsule adjacent to the tube opening. With time, the inflammatory reaction decreased. At 60 days, the connective tissue adjacent to the bonding agents exhibited a persistent inflammatory response mediated by macrophages and giant cells which were engulfing displaced resin components. on the other hand, for the control group (calcium hydroxide) no inflammatory response associated with a thin capsule adjacent to the material was observed even at the 30-day period. The hard-setting calcium hydroxide cement allowed complete healing and was considered more biocompatible than the bonding agents.
Resumo:
Background: Prosthetic rehabilitation of the posterior maxilla with dental implants is often difficult because of proximity to the maxillary sinus and insufficient bone height. Maxillary sinus floor augmentation procedures aim to obtain enough bone with an association between biomaterials and autogenous bone.Purpose: the purpose of this study was to evaluate histomorphometrically two grafting materials (calcium phosphate and Ricinus communis polymer) used in maxillary sinus floor augmentation associated with autogenous bone.Materials and Methods: Biopsies were taken from 10 consecutive subjects (mean age 45 years) 10 months after maxillary sinus floor augmentation. The sinus lift was performed with a mixture of autogenous bone and R. communis polymer or calcium phosphate in a 1:2 proportion. Routine histologic processing and staining with hernatoxylin and eosin were performed.Results: the histomorphometric analysis indicated satisfactory regenerative results in both groups for a mean of bone tissue in the grafted area (44.24 +/- 13.79% for the calcium phosphate group and 38.77 +/- 12.85% for the polymer group). Histologic evaluation revealed the presence of an inflammatory infiltrate of mononuclear prevalence that, on average, was nonsignificant. The histologic sections depicted mature bone with compact and cancellous areas in both groups.Conclusion: the results indicated that both graft materials associated with the autogenous bone were biocompatible, although both were still present after 10 months.
Resumo:
Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial.
Resumo:
Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these Substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat's calvaria. Bone defects of 8 mm in diameter were surgically created in the calviria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect's region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect's area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation Could be Seen. In Conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat's calvaria. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 93A: 107-114, 2016
Resumo:
The objective of the present study was to evaluate the outcomes of autogenous bone graft (AB) and bioglass (BG) associated or not with leukocyte-poor platelet-rich plasma (LP-PRP) in the rabbit maxillary sinus (MS) by histomorphometric and radiographic analysis. Twenty rabbits divided into 2 groups (G1, G2) were submitted to sinus lift surgery. In G1, 10 MS were grafted with AB and 10 MS were grafted with BG. In G2, 10 MS were grafted with AB + LP-PRP and 10 MS were grafted with BG + LP-PRP. After 90 days, the animals were killed and specimens were obtained, x-rayed, and submitted to histomorphometric, radiographic bone density (RD) and fractal dimension analysis. Radiographic bone density mean values (SD), expressed as aluminum equivalent in mm, of AB, BG, AB + LP-PRP, and BG + LP-PRP groups were 1.79 (0.31), 2.04 (0.39), 1.61 (0.28), and 1.53 (0.30), respectively. Significant differences (P < 0.05) were observed between BG and AB, and BG + PRP and BG. Fractal dimension mean values were 1.48 (0.04), 1.35 (0.08), 1.44 (0.04), and 1.44 (0.06), respectively. Significant differences were observed between BG and AB, and AB + LP-PRP and BG. Mean values for the percentage of bone inside MS were 63.30 (8.60), 52.65 (10.41), 55.25 (7.01), and 51.07 (10.25), respectively. No differences were found. No correlations were observed among percentage of bone, RD and FD. Histological analysis showed that MS treated with AB presented mature and new bone formation. The other groups showed minor bone formation. Within the limitations of this study, the results indicated that at a 90-day time end point, AB yielded better results than AB + LP-PRP, BG, and BG + LP-PRP and should be considered the primary material for MS augmentation.
Resumo:
Objectives. The aim of this in vivo study was to evaluate the human dental pulp response when a one-bottle adhesive system was applied on etched or unetched deep dentine.Methods. Eighteen class V deep cavity preparations were divided in three groups: group 1-total etching + two coats of single bond (SB) + composite resin (Z-100); group 2-enamel etching + two coats of SB + Z-100, group 3-cavity floor lined with a calcium hydroxide liner (Dycal) + acid-etching of enamel and lateral walls + two coats of SB + Z-100. Two teeth were used as intact control group. After 30 days the teeth were extracted and processed through H and E, Masson's trichrome and Brown and Brenn staining techniques.Results. Moderate inflammatory response, disorganization of pulp tissue, as well as, deposition of thin layer of reactionary dentin were observed in group 1 teeth in which the remaining dentin thickness (RDT) was less than 300 mum. These histological findings appear to be related to long resin tags formation and bonding agent diffusion through dentinal tubules. In group 2, slight inflammatory response was observed only in one tooth in which the RDT was 162 mum. In group 3, all the teeth showed normal histological characteristics which were similar to the intact control group. Presence of bacteria was not correlated with the intensity of pulpal response. The patients reported no symptoms during the experiment. Radiographic evaluation showed no periapical pathology for any of the teeth,Significance and conclusions. Acid-etched deep dentin (RDT less than 300 mum) lined with SB causes more intense pulpal response than unetched deep dentin. Based on the results observed in the present study and the conditions in which it was carried out, we recommend the application of a biocompatible liner before etching deep dentin and applying SB. (C) 2002 Academy of Dental Materials. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study compared the fixation of autogenous onlay bone grafts with cyanoacrylate glue (Super Bonder) and with titanium screws. Twenty rabbits underwent bilateral parietal ostectomies. Bone segments were fixed anteriorly to the resulting bone defect. In group I, the grafts were fixed with 4 min long, 1.5 mm diameter screws; in group II, adhesive was used. The animals were killed after 5, 15, 30, 60 and 120 days. Histomorphometric analysis was used to quantify the maintenance of the graft area. Discrete areas of inflammatory reaction were seen in both groups after 5 days and for group II after 15 days. After 30 days, new bone formation was seen at the interface of the grafts. After 120 days, the graft was incorporated into the host bed in group I and partially incorporated in group II. There was a significant statistical difference regarding the mean graft areas between 15 and 120 days (p < 0.001) and between fixation methods (p < 0.002). Fixation with adhesive promoted a significantly greater area of bone graft than screw fixation, independent of time period. The adhesive was biocompatible, presented similar stability to the screw and maintained the bone area, although there was a delay in graft incorporation.
Resumo:
Background Tissue adhesives have been widely used for wound closure, especially in children, because they are painless, fast, and easy to use and result in minimal scarring.Objective To analyze the biocompatibility of an adhesive based on n-butyl-cyanoacrylate in the subcutaneous tissue of rats.Materials and Methods Two surgical sites were prepared (approximately 3 cm apart): one on the left side of the animal and the other on the right side); polyethylene tubes were implanted in each surgical site. The tube on the left was filled with n-butyl-cyanoacrylate (treated group) and the tube on the right side was unfilled (control group). After 7, 30, and 120 days, the animals were killed, and the specimens were processed for histologic analysis.Results No significant inflammatory reaction occurred in the treated group, showing results similar to the control group.Conclusion This adhesive based on n-butyl-cyanoacrylate is biocompatible in the subcutaneous tissue of rats.
Resumo:
The biological response following subcutaneous and bone implantation of beta-wollastonite(beta-W)-doped alpha-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalciurn phosphate (TCP), consisting of a mixture of alpha- and beta-polymorphs; TCP doped with 5 wt. % of beta-W (TCP5W), composed of alpha-TCP as only crystalline phase; and TCP doped with 15 wt. % of beta-W (TCP15), containing crystalline alpha-TCP and beta-W. Cylinders of 2x1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue beta-W-doped alpha-TCP implants (TCP5W and TCP15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.