901 resultados para bioavailability
Resumo:
The use of liposomes as carriers for the delivery of biologically active molecules into the eye is of major interest. Indeed, encapsulation of biologically active molecules in liposomes may increase their bioavailability and may induce a sustained release, thus avoiding repeated intraocular injections and reducing side effects. We describe here the fate of rhodamine-conjugated liposomes (Rh-Lip) injected into the vitreous of normal Lewis rats. Twenty-four hours after intravitreal injection fluorescent liposomes were detected in the vitreous, the inner layer of the retina and to a lesser extent in the anterior segment of the eye. In addition, numerous Rh-Lip were also observed in the episclera and conjunctival stroma, in conjunctival lymphatic vessels and cervical lymph nodes (LN) draining the conjunctiva and the eye. In the LN, Rh-Lip were taken up by resident macrophages adjacent to CD4+ and CD8+ T cells. Thus, intravitreal injection of anti-inflammatory drugs loaded in liposomes could modulate the ocular immune microenvironment. In addition the passage of drugs into the cervical LN could alter the immune status of these LN and contribute to the regulation of intraocular inflammation. Our results suggest that this phenomenon should be taken into account to design new therapies based on intraocular drug administration.
Resumo:
A luminescent bacterial biosensor was used to quantify bioavailable arsenic in artificial groundwater. Its light production above the background emission was proportional to the arsenite concentration in the toxicologically relevant range of 0 to 0.5 mu M. Effects of the inorganic solutes phosphate, Fe(II) and silicate on the biosensor signal were studied. Phosphate at a concentration of 0.25 g L-1 phosphate slightly stimulated the light emission, but much less than toxicologically relevant concentrations of the much stronger inducer arsenite. No effect of phosphate was oberved in the presence of arsenite. Freshly prepared sodium silicate solution at a concentration of 10 g L-1 Si reduced the arsenite-induced light production by roughly 37%, which can be explained by transient polymerization leading to sequestration of some arsenic. After three days of incubation, silicate did not have this effect anymore, probably because depolymerization occurred. In the presence of 0.4 g L-1 Fe(II), the arsenite-induced light emission was reduced by up to 90%, probably due to iron oxidation followed by arsenite adsorption on the less soluble Fe(III) possibly along with some oxidation to the stronger adsorbing As(V). Addition of 100 mu M EDTA was capable of releasing all arsenic from the precipitate and to transform it into the biologically measurable, dissolved state. The biosensor also proved valuable for monitoring the effectiveness of an arsenic removal procedure based on water filtration through a mixture of sand and iron granules.
Resumo:
Abstract: Traditionally, pollution risk assessment is based on the measurement of a pollutant's total concentration in a sample. The toxicity of a given pollutant in the environment, however, is tightly linked to its bioavailability, which may differ significantly from the total amount. Physico-chemical and biological parameters strongly influence pollutant fate in terms of leaching, sequestration and biodegradation. Bacterial sensorreporters, which consist of living micro-organisms genetically engineered to produce specific output in response to target chemicals, offer an interesting alternative to monitoring approaches. Bacterial sensor-reporters detect bioavailable and/or bioaccessible compound fractions in samples. Currently, a variety of environmental pollutants can be targeted by specific biosensor-reporters. Although most of such strains are still confined to the lab, several recent reports have demonstrated utility of bacterial sensing-reporting in the field, with method detection limits in the nanomolar range. This review illustrates the general design principles for bacterial sensor-reporters, presents an overview of the existing biosensor-reporter strains with emphasis on organic compound detection. A specific focus throughout is on the concepts of bioavailability and bioaccessibility, and how bacteria-based sensing-reporting systems can help to improve our basic understanding of the different processes at work.
Resumo:
OBJECTIVE: The reverse transcriptase inhibitor efavirenz is currently used at a fixed dose of 600 mg/d. However, dosage individualization based on plasma concentration monitoring might be indicated. This study aimed to assess the efavirenz pharmacokinetic profile and interpatient versus intrapatient variability in patients who are positive for human immunodeficiency virus, to explore the relationship between drug exposure, efficacy, and central nervous system toxicity and to build up a Bayesian approach for dosage adaptation. METHODS: The population pharmacokinetic analysis was performed by use of NONMEM based on plasma samples from a cohort of unselected patients receiving efavirenz. With the use of a 1-compartment model with first-order absorption, the influence of demographic and clinical characteristics on oral clearance and oral volume of distribution was examined. The average drug exposure during 1 dosing interval was estimated for each patient and correlated with markers of efficacy and toxicity. The population kinetic parameters and the variabilities were integrated into a Bayesian equation for dosage adaptation based on a single plasma sample. RESULTS: Data from 235 patients with a total of 719 efavirenz concentrations were collected. Oral clearance was 9.4 L/h, oral volume of distribution was 252 L, and the absorption rate constant was 0.3 h(-1). Neither the demographic covariates evaluated nor the comedications showed a clinically significant influence on efavirenz pharmacokinetics. A large interpatient variability was found to affect efavirenz relative bioavailability (coefficient of variation, 54.6%), whereas the intrapatient variability was small (coefficient of variation, 26%). An inverse correlation between average drug exposure and viral load and a trend with central nervous system toxicity were detected. This enabled the derivation of a dosing adaptation strategy suitable to bring the average concentration into a therapeutic target from 1000 to 4000 microg/L to optimize viral load suppression and to minimize central nervous system toxicity. CONCLUSIONS: The high interpatient and low intrapatient variability values, as well as the potential relationship with markers of efficacy and toxicity, support the therapeutic drug monitoring of efavirenz. However, further evaluation is needed before individualization of an efavirenz dosage regimen based on routine drug level monitoring should be recommended for optimal patient management.
Resumo:
OBJECTIVE: The pharmacokinetic and pharmacodynamic properties of YM087, (4'-[(2-methyl-1,4,5,6- tetrahydroimidazo[4,5-d][1]benzazepin-6-yl)-carbonyl]-2-p henylbenzanilide monohydrochloride), a new orally active, dual V1/V2 receptor antagonist were characterised in healthy normotensive subjects. METHODS: Six subjects were randomly allocated to receive, at 1-week intervals, a single oral dose of 60 mg YM087 and a single i.v. dose of 50 mg YM087 in an open-label, crossover study. RESULTS: YM087 had an oral bioavailability of 44% and a short half-life. Upon oral and i.v. administration of YM087, a significant sevenfold increase in urine flow rate and a fall in urinary osmolality (from 600 mosmol/l to less than 100-mosmol/l) were observed with a peak effect 2 h after drug intake suggesting effective vasopressin V2 receptor blockade. Simultaneously, significant increases in plasma osmolality (from 283 +/- 1.3 mosmol/l to 288 +/- 1.0 mosmol/l after i.v. and from 283 +/- 2.1 mosmol/l to 289 +/- 1.7-mosmol/l after oral administration) and vasopressin levels (from 1.5 +/- 0.3 pg/ml to 3.7 +/- 0.6 pg/ml after i.v. and from 0.9 +/- 0.1 pg/ml to 3.9 +/- 0.7 pg/ml after oral administration) were found. When administered i.v., YM087 inhibited the vasopressin-induced skin vasoconstriction, suggesting a blockade of V1 receptors. However, the YM087-induced antagonism of V1 receptors was less pronounced than V2 receptor blockade. CONCLUSION: These data show that YM087 is an effective dual V1/V2 receptor antagonist in man.
Resumo:
Chlamydia are obligate intracellular bacteria. Three species are considered human pathogens. Chlamydophila pneumoniae is one of the most common agents of atypical community-acquired pneumonia. Chlamydophila psittaci causes psittacosis, a severe zoonotic pneumonia transmitted by birds. Finally, Chlamydia trachomatis is the etiologic agent of trachoma and urogenital infections. The latter are commonly asymptomatic or paucisymptomatic. Thus, they may remain undiagnosed for years, leading to serious late complications such as salpingitis, ectopic pregnancy and infertility. Currently, the diagnosis of chlamydial infections is essentially based on molecular methods. Treatment should use an antibiotic with good intracellular bioavailability such as tetracycline, macrolides and new generation fluoroquinolones.
Resumo:
INTRODUCTION Selenium is an essential micronutrient for human health, being a cofactor for enzymes with antioxidant activity that protect the organism from oxidative damage. An inadequate intake of this mineral has been associated with the onset and progression of chronic diseases such as hypertension, diabetes, coronary diseases, asthma, and cancer. For this reason, knowledge of the plasma and erythrocyte selenium levels of a population makes a relevant contribution to assessment of its nutritional status. OBJECTIVE The objective of the present study was to determine the nutritional status of selenium and risk of selenium deficiency in a healthy adult population in Spain by examining food and nutrient intake and analyzing biochemical parameters related to selenium metabolism, including plasma and erythrocyte levels and selenium-dependent glutathione peroxidase (GPx) enzymatic activity. MATERIAL AND METHODS We studied 84 healthy adults (31 males and 53 females) from the province of Granada, determining their plasma and erythrocyte selenium concentrations and the association of these levels with the enzymatic activity of glutathione peroxidase (GPx) and with life style factors. We also gathered data on their food and nutrient intake and the results of biochemical analyses. Correlations were studied among all of these variables. RESULTS The mean plasma selenium concentration was 76.6 ± 17.3 μg/L (87.3 ± 17.4 μg/L in males, 67.3 ± 10.7 μg/L in females), whereas the mean erythrocyte selenium concentration was 104.6 μg/L (107.9 ± 26.1 μg/L in males and 101.7 ± 21.7 μg/L in females). The nutritional status of selenium was defined by the plasma concentration required to reach maximum GPx activity, establishing 90 μg/L as reference value. According to this criterion, 50% of the men and 53% of the women were selenium deficient. CONCLUSIONS Selenium is subjected to multiple regulation mechanisms. Erythrocyte selenium is a good marker of longer term selenium status, while plasma selenium appears to be a marker of short-term nutritional status. The present findings indicate a positive correlation between plasma selenium concentration and the practice of physical activity. Bioavailability studies are required to establish appropriate reference levels of this mineral for the Spanish population.
Resumo:
Humans are not programmed to be inactive. The combination of both accelerated sedentary lifestyle and constant food availability disturbs ancient metabolic processes leading to excessive storage of energy in tissue, dyslipidaemia and insulin resistance. As a consequence, the prevalence of Type 2 diabetes, obesity and the metabolic syndrome has increased significantly over the last 30 years. A low level of physical activity and decreased daily energy expenditure contribute to the increased risk of cardiovascular morbidity and mortality following atherosclerotic vascular damage. Physical inactivity leads to the accumulation of visceral fat and consequently the activation of the oxidative stress/inflammation cascade, which promotes the development of atherosclerosis. Considering physical activity as a 'natural' programmed state, it is assumed that it possesses atheroprotective properties. Exercise prevents plaque development and induces the regression of coronary stenosis. Furthermore, experimental studies have revealed that exercise prevents the conversion of plaques into a vulnerable phenotype, thus preventing the appearance of fatal lesions. Exercise promotes atheroprotection possibly by reducing or preventing oxidative stress and inflammation through at least two distinct pathways. Exercise, through laminar shear stress activation, down-regulates endothelial AT1R (angiotensin II type 1 receptor) expression, leading to decreases in NADPH oxidase activity and superoxide anion production, which in turn decreases ROS (reactive oxygen species) generation, and preserves endothelial NO bioavailability and its protective anti-atherogenic effects. Contracting skeletal muscle now emerges as a new organ that releases anti-inflammatory cytokines, such as IL-6 (interleukin-6). IL-6 inhibits TNF-α (tumour necrosis factor-α) production in adipose tissue and macrophages. The down-regulation of TNF-α induced by skeletal-muscle-derived IL-6 may also participate in mediating the atheroprotective effect of physical activity.
Resumo:
Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review.
Resumo:
Cerebral malaria (CM) is a life-threatening complication of Plasmodium falciparum malaria that continues to be a major global health problem. Brain vascular dysfunction is a main factor underlying the pathogenesis of CM and can be a target for the development of adjuvant therapies for the disease. Vascular occlusion by parasitised red blood cells and vasoconstriction/vascular dysfunction results in impaired cerebral blood flow, ischaemia, hypoxia, acidosis and death. In this review, we discuss the mechanisms of vascular dysfunction in CM and the roles of low nitric oxide bioavailability, high levels of endothelin-1 and dysfunction of the angiopoietin-Tie2 axis. We also discuss the usefulness and relevance of the murine experimental model of CM by Plasmodium berghei ANKA to identify mechanisms of disease and to screen potential therapeutic interventions.
Resumo:
Objective: This analysis was performed to assess whether antiepileptic drugs (AEDs) modulate the effectiveness of temozolomide radiochemotherapy in patients with newly diagnosed glioblastoma.Methods: The European Organization for Research and Treatment of Cancer (EORTC) 26981-22981/National Cancer Institute of Canada (NCIC) CE.3 clinical trial database of radiotherapy (RT) with or without temozolomide (TMZ) for newly diagnosed glioblastoma was examined to assess the impact of the interaction between AED use and chemoradiotherapy on survival. Data were adjusted for known prognostic factors.Results: When treatment began, 175 patients (30.5%) were AED-free, 277 (48.3%) were taking any enzyme-inducing AED (EIAED) and 135 (23.4%) were taking any non-EIAED. Patients receiving valproic acid (VPA) only had more grade 3/4 thrombopenia and leukopenia than patients without an AED or patients taking an EIAED only. The overall survival (OS) of patients who were receiving an AED at baseline vs not receiving any AED was similar. Patients receiving VPA alone (97 [16.9%]) appeared to derive more survival benefit from TMZ/RT (hazard ratio [HR] 0.39, 95% confidence interval [CI] 0.24-0.63) than patients receiving an EIAED only (252 [44%]) (HR 0.69, 95% CI 0.53-0.90) or patients not receiving any AED (HR 0.67, 95% CI 0.49-0.93). Conclusions: VPA may be preferred over an EIAED in patients with glioblastoma who require an AED during TMZ-based chemoradiotherapy. Future studies are needed to determine whether VPA increases TMZ bioavailability or acts as an inhibitor of histone deacetylases and thereby sensitizes for radiochemotherapy in vivo.
Resumo:
The recommended treatment for latent tuberculosis (TB) infection in adults is a daily dose of isoniazid (INH) 300 mg for six months. In Brazil, INH was formulated as 100 mg tablets. The treatment duration and the high pill burden compromised patient adherence to the treatment. The Brazilian National Programme for Tuberculosis requested a new 300 mg INH formulation. The aim of our study was to compare the bioavailability of the new INH 300 mg formulation and three 100 mg tablets of the reference formulation. We conducted a randomised, single dose, open label, two-phase crossover bioequivalence study in 28 healthy human volunteers. The 90% confidence interval for the INH maximum concentration of drug observed in plasma and area under the plasma concentration vs. time curve from time zero to the last measurable concentration “time t” was 89.61-115.92 and 94.82-119.44, respectively. The main limitation of our study was that neither adherence nor the safety profile of multiple doses was evaluated. To determine the level of INH in human plasma, we developed and validated a sensitive, simple and rapid high-performance liquid chromatography-tandem mass spectrometry method. Our results showed that the new formulation was bioequivalent to the 100 mg reference product. This finding supports the use of a single 300 mg tablet daily strategy to treat latent TB. This new formulation may increase patients’ adherence to the treatment and quality of life.
Resumo:
Objective This paper reviews the development and clinical validation of photodynamic diagnosis (PDD) of bladder cancer. Methods The authors reviewed the literature on the development of PDD, in particular the evidence for the clinical efficacy of hexaminolevulinate PDD in the diagnosis of bladder cancer. Results After initial work on ultraviolet cystoscopy following oral tetracycline, the focus of PDD research shifted to the use of synthetic porphyrins. First, the prodrug delta-aminolevulinic acid (ALA) was shown to cause a transient but significant accumulation of protoporphyrin IX (PpIX) in malignant or premalignant bladder tissue. Excitation by blue light leads to PpIX fluorescence (red), which distinguishes tumour from normal tissue (blue). Hexaminolevulinate (HAL, Hexvix), an ester of ALA, was then developed and has greater bioavailability and stability than the parent compound. It has been approved for clinical use in the diagnosis of bladder cancer. Clinical studies have shown that HAL PDD detects tumours, including carcinoma in situ (CIS), that are missed by conventional white-light cystoscopy. Conclusions HAL PDD is a valuable aid to the detection of bladder tumours, including CIS.
Resumo:
Oseltamivir is the ester-type prodrug of the neuraminidase inhibitor oseltamivir carboxylate. It has been shown to be an effective treatment for both seasonal influenza and the recent pandemic 2009 A/H1N1 influenza, reducing both the duration and severity of the illness. It is also effective when used preventively. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of possible therapeutic drug monitoring. According to the currently available literature, the pharmacokinetics of oseltamivir carboxylate after oral administration of oseltamivir are characterized by mean ± SD bioavailability of 79 ± 12%, apparent clearance of 25.3 ± 7.0 L/h, an elimination half-life of 7.4 ± 2.5 hours and an apparent terminal volume of distribution of 267 ± 122 L. A maximum plasma concentration of 342 ± 83 μg/L, a time to reach the maximum plasma concentration of 4.2 ± 1.1 hours, a trough plasma concentration of 168 ± 32 μg/L and an area under the plasma concentration-time curve from 0 to 24 hours of 6110 ± 1330 μg · h/L for a 75 mg twice-daily regimen were derived from literature data. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Interpatient variability is moderate (28% in apparent clearance and 46% in the apparent central volume of distribution); there is no indication of significant erratic or limited absorption in given patient subgroups. The in vitro pharmacodynamics of oseltamivir carboxylate reveal wide variation in the concentration producing 50% inhibition of influenza A and B strains (range 0.17-44 μg/L). A formal correlation between systemic exposure to oseltamivir carboxylate and clinical antiviral activity or tolerance in influenza patients has not yet been demonstrated; thus no formal therapeutic or toxic range can be proposed. The pharmacokinetic parameters of oseltamivir carboxylate after oseltamivir administration (bioavailability, apparent clearance and the volume of distribution) are fairly predictable in healthy subjects, with little interpatient variability outside the effect of renal function in all patients and bodyweight in children. Thus oseltamivir carboxylate exposure can probably be controlled with sufficient accuracy by thorough dosage adjustment according to patient characteristics. However, there is a lack of clinical study data on naturally infected patients. In addition, the therapeutic margin of oseltamivir carboxylate is poorly defined. The usefulness of systematic therapeutic drug monitoring in patients therefore appears to be questionable; however, studies are still needed to extend the knowledge to particular subgroups of patients or dosage regimens.
Resumo:
The pharmacokinetic profile of imatinib has been assessed in healthy subjects and in population studies among thousands of patients with CML or GIST. Imatinib is rapidly and extensively absorbed from the GI tract, reaching a peak plasma concentration (Cmax) within 1-4 h following administration. Imatinib bioavailability is high (98%) and independent of food intake. Imatinib undergoes rapid and extensive distribution into tissues, with minimal penetration into the central nervous system. In the circulation, it is approximately 95% bound to plasma proteins, principally α1-acid glycoprotein (AGP) and albumin. Imatinib undergoes metabolism in the liver via the cytochrome P450 enzyme system (CYP), with CYP3A4 being the main isoenzyme involved. The N-desmethyl metabolite CGP74588 is the major circulating active metabolite. The typical elimination half-life for imatinib is approximately 14-22 h. Imatinib is characterized by large inter-individual pharmacokinetic variability, which reflects in a wide spread of concentrations observed under standard dosage. Besides adherence, several factors have been shown to influence this variability, especially demographic characteristics (sex, age, body weight and disease diagnosis), blood count characteristics, enzyme activity (mainly CYP3A4), drug interactions, activity of efflux transporters and plasma levels of AGP. Additionally, recent retrospective studies have shown that drug exposure, reflected in either the area under the concentration-time curve (AUC) or more conveniently the trough level (Cmin), correlates with treatment outcomes. Increased toxicity has been associated with high plasma levels, and impaired clinical efficacy with low plasma levels. While no upper concentration limit has been formally established, a lower limit for imatinib Cmin of about 1000 ng/mL has been proposed repeatedly for improving outcomes in CML and GIST patients. Imatinib is licensed for use in chronic phase CML and GIST at a fixed dose of 400 mg once daily (600 mg in some other indications) despite substantial pharmacokinetic variability caused by both genetic and acquired factors. The dose can be modified on an individual basis in cases of insufficient response or substantial toxic effects. Imatinib would, however, meet traditional criteria for a therapeutic drug monitoring (TDM) program: long-term therapy, measurability, high inter-individual but restricted intra-individual variability, limited pharmacokinetic predictability, effect of drug interactions, consistent association between concentration and response, suggested therapeutic threshold, reversibility of effect and absence of early markers of efficacy and toxic effects. Large-scale, evidence-based assessments of drug concentration monitoring are therefore still warranted for the personalization of imatinib treatment.