336 resultados para beta1-adrenoceptors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tricyclic antidepressants, such as amitriptyline, are inhibitors of serotonin and norepinephrine neuronal reuptake and this action has been implied in changes in pain threshold supporting its use to alleviate neuropathic pain. Although is known that 1 adrenoceptors participate in the antinociceptive effect of amitriptyline it is unclear which receptor subtype is the target for the increased synaptic levels of norepinephrine resultant from the inhibition of neuronal uptake. Paradoxically, several tricyclic antidepressants including amitriptyline also behave as antagonists of 1 adrenoceptors with different affinities for its subtypes: these drugs have 10 to 100-fold higher affinities for 1A than for 1B and 1D adrenoceptors. This work investigated the involvement of 1 adrenoceptors subtypes in the antinociceptive effect of the amitriptyline in a constriction of the sciatic nerve in rats by determining the effects of subtype selective 1 adrenoceptors antagonists. Fifteen days later, mechanical hyperalgesia was analyzed in a Randall-Selitto test. The 1A-selective antagonist RS100329 was the most potent antagonist of the contractions of the rat prostate, whereas the 1D-selective antagonist BMY 7378 (up to 100g/Kg) was unable to affect these contractions. The antagonist prazosin, BMY 7378 and 5-methyl urapidil inhibited the antinociceptive effect of the amitriptyline. However, the highly selective 1A adrenoceptor antagonist RS100329 was unable to affect the antinociception induced by amitriptyline. These results point out that 1B and/or 1D adrenoceptors, but not 1A, are involved in the antinociceptive effects of amitriptyline

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Farmacologia) - IBB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of a2-adrenoceptors with bilateral injections of moxonidine (a2-adrenoceptor and imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake induced by treatment with furosemide (FURO) + captopril (CAP) subcutaneously. In the present study, we analyzed licking microstructure during water and 1.8% NaCl intake to investigate the changes in orosensory and postingestive signals produced by moxonidine injected into the LPBN. Male Sprague–Dawley rats were treated with FURO + CAP combined with bilateral injections of vehicle or moxonidine (0.5 nmol/0.2 ll) into the LPBN. Bilateral injections of moxonidine into the LPBN increased FURO + CAP-induced 1.8% NaCl intake, without changing water intake. Microstructural analysis of licking behavior found that this increase in NaCl intake was a function of increased number of licking bursts from 15 to 75 min of the test (maximum of 49 ± 9 bursts/bin, vs. vehicle: 2 ± 2 bursts/bin). Analysis of the first 15 min of the test, when most of the licking behavior occurred, found no effect of moxonidine on the number of licks/burst for sodium intake (24 ± 5 licks/burst, vs. vehicle: 27 ± 8 licks/burst). This finding suggests that activation of a2-adrenoceptors in the LPBN affects postingestive signals that are important to inhibit and limit sodium intake by FURO + CAP-treated rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of chlorethylclonidine (CEC), 5-methyl-urapidil (5-MU), ryanodine and prolonged exposition to norepinephrine (NE) on the concentration-response curves (CRC) to this agonist on the bisected rat vas deferens (RVD) were investigated. 2. CEC did not affect the 50% effective concentration (EC50) of NE in either the prostatic (PP) or the epididymal (EP) portions of the RVD. 3. 5-MU did not alter the EC50 of NE in the PP but caused a significant and concentration-dependent rightward shift of the CRC to NE in the EP. 4. Ryanodine caused a shift to the right of the CRC to NE in the PP associated to a decrease in maximal response, but did not affect the CRC to NE in the EP. 5. Incubation of the EP with NE for 6 hr elicited a significant decrease in the maximal response with no changes in the EC50. Similar treatment of the PP was associated with a significant shift to the right of the CRC to NE without modifications in the maximal response. 6. These results suggest that in the RVD, NE interacts with two different alpha 1-adrenoceptors subtypes which are disposed in a selective manner along the RVD: the alpha 1(a) subtype in the EP, and non-alpha 1b-non-alpha 1a adrenoceptor subtype mainly located at the PP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contractions of the rat vas deferens in response to noradrenaline are mediated through alpha(1A)-adrenoceptors. We observed participation of alpha(1B)-adrenoceptors in these contractions after castration. We now investigated the time course of this plasticity and the effects of testosterone by determining the actions of competitive antagonists on noradrenaline-induced contractions after 7, 14, 21 and 30 days of castration. BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride) antagonised noradrenaline-induced contractions in control and castrated rats with low pA(2) values (approximately = 6.8). In control vas deferens, WB 4101 (2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride) had a slope in the Schild plot no different from 1.0, while slopes lower than 1.0 (approximately 0.6) were observed for vas deferens from castrated rats. Chloroethylclonidine was ineffective in the control vas while it inhibited noradrenaline-induced contractions in vasa from castrated rats and converted the complex antagonism by WB 4101 into simple competitive antagonism. Treatment of castrated rats with testosterone prevented the effects of castration. The results suggest that alpha(1B)-adrenoceptors are detectable in vas deferens from at least the 7th through the 30th day after castration and that testosterone prevents this plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mirabegron is the first β3-adrenoceptor (AR) agonist approved for treatment of overactive bladder syndrome (OAB). This study aimed to investigate the effects of β3-adrenoceptor (AR) agonist mirabegron in mouse urethra. The possibility that mirabegron exerts α1-AR antagonism was also tested in rat smooth muscle preparations presenting α1A- (vas deferens and prostate), α1D- (aorta) and α1B-AR (spleen). Functional assays were carried out in mouse and rat isolated tissues. Competition assays for the specific binding of [(3) H]Prazosin to membrane preparations of HEK 293 cells expressing each of the human α1-ARs, as well as β-AR mRNA expression and cyclic AMP measurements in mouse urethra were performed. Mirabegron produced concentration-dependent urethral relaxations that were right shifted by the selective β3-AR antagonist L 748,337, but unaffected by β1- and β2-AR antagonists (atenolol and ICI 118,551, respectively). Mirabegron-induced relaxations were enhanced by the phosphodiesterase-4 inhibitor rolipram, and this agonist stimulated cAMP synthesis. Mirabegron also produced rightward shifts in urethral contractions induced by the α1-AR agonist phenylephrine. Schild regression analysis revealed that mirabegron behaves as a competitive antagonist of α1-AR in urethra, vas deferens and prostate (α1A-AR, pA2  ≅ 5.6) and aorta (α1D-AR, pA2  ≅ 5.4), but not in spleen (α1B-AR). The affinities estimated for mirabegron in functional assays were consistent with those estimated in radioligand binding with human recombinant α1A- and α1D-ARs (pKi ≅ 6.0). The effects of mirabegron in urethral smooth muscle are the result of β3-AR agonism together with α1A / α1D-AR antagonism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we investigated the effect of phenylephrine and clonidine (α1- and α2-adrenoceptor agonists, respectively) injected into the lateral preoptic area (LPOA) on the water intake induced by water deprivation in rats. In addition, the effects of prior injections of prazosin and yohimbine (α1- and α2-adrenoceptor antagonists, respectively) into the LPOA on the antidipsogenic action of phenylephrine and clonidine were investigated. After 30 h of water deprivation, the water intake of rats in a control experiment (saline injection) was 10.5 ± 0.8 ml/h. Injection of clonidine (5, 10, 20, and 40 nmol) into the LPOA reduced water intake to 6.3 ± 0.9, 4.9 ± 0.8, 3.6 ± 1.0, and 2.2 ± 0.7 ml/h, respectively. Similar reductions occurred after injection of 80 and 160 nmol phenylephrine into the LPOA (6.2 ± 1.6 and 4.8 ± 1.3 ml/h, respectively). Pretreatment with prazosin (40 nmol) abolished the antidipsogenic action of an 80-nmol dose of phenylephrine (11.3 ± 1.1 ml/h) and reduced the effect of a 20-nmol dose of clonidine (7.4 ± 1.4 ml/h). Yohimbine (20, 40, and 80 nmol), previously injected, produced no significant changes in the effects of either phenylephrine or clonidine. The present results show that phenylephrine and clonidine injected into the LPOA induce an antidipsogenic effect in water-deprived rat. They also suggest an involvement of α1-adrenoceptors in this effect. A possible participation of imidazole receptors in the effect of clonidine should also be taken into account. © 1993.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brown adipose tissue (BAT) is predominantly regulated by the sympathetic nervous system (SNS) and the adrenergic receptor signaling pathway. Knowing that a mouse with triple beta-receptor knockout (KO) is cold intolerant and obese, we evaluated the independent role played by the beta(1) isoform in energy homeostasis. First, the 30 min i.v. infusion of norepinephrine (NE) or the beta(1) selective agonist dobutamine (DB) resulted in similar interscapular BAT (iBAT) thermal response in WT mice. Secondly, mice with targeted disruption of the beta(1) gene (KO of beta(1) adrenergic receptor (beta 1KO)) developed hypothermia during cold exposure and exhibited decreased iBAT thermal response to NE or DB infusion. Thirdly, when placed on a high-fat diet (HFD; 40% fat) for 5 weeks, beta 1KO mice were more susceptible to obesity than WT controls and failed to develop diet-induced thermogenesis as assessed by BAT Ucp1 mRNA levels and oxygen consumption. Furthermore, beta 1KO mice exhibited fasting hyperglycemia and more intense glucose intolerance, hypercholesterolemia, and hypertriglyceridemia when placed on the HFD, developing marked non-alcoholic steatohepatitis. In conclusion, the beta(1) signaling pathway mediates most of the SNS stimulation of adaptive thermogenesis. Journal of Endocrinology (2012) 214, 359-365

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: beta(2)-adrenoceptor (beta(2)-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal beta(2)-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional beta(2)-AR (beta 2KO), focusing on the role of NO and superoxide anion. Methods and Results: Isolated thoracic aortas from beta 2KO and wild-type mice (WT) were studied. beta 2KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between beta 2KO and WT mice. Basal NO availability was reduced in aortas from beta 2KO mice. Incubation of beta 2KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. beta 2KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47(phox) expression was enhanced in beta 2KO aortas. Conclusions: The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of beta 2KO mice. This study extends the knowledge of the relevance of the endogenous activity of beta(2)-AR to the maintenance of the vascular physiology. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously reported that stimulation of alpha-1 adrenoceptors by noradrenaline (NA) injected into the lateral septal area (LSA) of anaesthetized rats causes pressor and bradycardic responses that are mediated by acute vasopressin release into the circulation through activation of the paraventricular nucleus (PVN). Although the PVN is the final structure of this pathway, the LSA has no direct connections with the PVN, suggesting that other structures may connect these areas. To address this issue, the present study employed c-Fos immunohistochemistry to investigate changes caused by NA microinjection into the LSA in neuronal activation in brain structures related to systemic vasopressin release. NA microinjected in the LSA caused pressor and bradycardic responses, which were blocked by intraseptal administration of alpha-1 adrenoceptor antagonist (WB4101, 10 nmol/200 nL) or systemic V-1 receptor antagonist (dTyr(CH2)5(Me)AVP, 50 mu g/kg). NA also increased c-Fos immunoreactivity in the prelimbic cortex (PL), infralimbic cortex (IL), dorsomedial periaqueductal gray (dmPAG), bed nucleus of the stria terminalis (BNST), PVN, and medial amygdala (MeA). No differences in the diagonal band of Broca, cingulate cortex, and dorsolateral periaqueductal gray (dlPAG) were found. Systemic administration of the vasopressin receptor antagonist dTyr AVP (CH2)5(Me) did not change the increase in c-Fos expression induced by intra-septal NA. This latter effect, however, was prevented by local injection of the alpha-1 adrenoceptor antagonist WB4101. These results suggest that areas such as the PL, IL, dmPAG, BNST, MeA, and PVN could be part of a circuit responsible for vasopressin release after activation of alpha-1 adrenoceptors in the LSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleus tractus solitarii (NTS), located in the brainstem, is one of the main nuclei responsible for integrating different signals in order to originate a specific and orchestrated autonomic response. Antihypertensive drugs are well known to stimulate alpha(2)-adrenoceptor (alpha(2R)) in brainstem cardiovascular regions to induce reduction in blood pressure. Because alpha(2R) impairment is present in several models of hypertension, the aim of the present study was to investigate the distribution and density of alpha(2R) binding within the NTS of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats during development (1,15,30 and 90 day-old) by an in vitro autoradiographical study. The NTS shows heterogeneous distribution of alpha(2R) in dorsomedial/dorsolateral, subpostremal and medial/intermediate subnuclei. Alpha(2R) increased from rostral to caudal dorsomedial/dorsolateral subnuclei in 30 and 90 day-old SHR but not in WKY. Alpha(2R) decreased from rostral to caudal subpostremal subnucleus in 15, 30 and 90 day-old SHR but not in WKY. Medial/intermediate subnuclei did not show any changes in alpha(2R) according to NTS levels. Furthermore, alpha(2R) are decreased in SHR as compared with WKY in all NTS subnuclei and in different ages. Surprisingly, alpha(2R) impairment was also found in pre-hypertensive stages, specifically in subpostremal subnucleus of 15 day-old rats. Finally, alpha(2R) decrease from 1 to 90 day-old rats in all subnuclei analyzed. This decrease is different between strains in rostral dorsomedial/dorsolateral and caudal subpostremal subnuclei within the NTS. In summary, our results highlight the importance of alpha(2R) distribution within the NTS regarding the neural control of blood pressure and the development of hypertension. (C) 2011 Elsevier B.V. All rights reserved.