987 resultados para beta-catenin
Resumo:
Pivaloyl-L-Pro-Aib-N-methylamihdaes been shown to possess one intramolecular hydrogen bond in (CD&SO solution, by 'H-nmr methods, suggesting the existence of p-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II P-turn conformations are about 2 kcal mol-' more stable than Type 111 structures. A crystallographic study has established the Type I1 /%turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 8, b = 11.421 A, c = 12.966 A, /3 = 97.55", and 2 = 2. The structure has been refined to a final R value of 0.061. The Type I1 p-turn conformation is stabilized by an intramolecular 4 - 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are @pro= -57.8", $pro = 139.3', @Aib = 61.4', and $Ajb = 25.1'. The Type 11 /%turn conformation for Pro-Aib in this peptide is compared with the Type I11 structures observed for the same segment in larger peptides.
Resumo:
CD4+ and gamma delta T cells are activated readily by Mycobacterium tuberculosis. To examine their role in the human immune response to M. tuberculosis, CD4+ and gamma delta T cells from healthy tuberculin-positive donor were studied for patterns of Ag recognition, cytotoxicity, and cytokine production in response to M. tuberculosis-infected mononuclear phagocytes. Both T cell subsets responded to intact M. tuberculosis and its cytosolic Ags. However, CD4+ and gamma delta T cells differed in the range of cytosolic Ags recognized: reactivity to a wide m.w. range of Ags for CD4+ T cells, and a restricted pattern for gamma delta T cells, with dominance of Ags of 10 to 15 kDa. Both T cell subsets were equally cytotoxic for M. tuberculosis-infected monocytes. Furthermore, both CD4+ and gamma delta T cells produced large amounts of IFN-gamma: mean pg/ml of IFN-gamma in supernatants was 2458 +/- 213 for CD4+ and 2349 +/- 245 for gamma delta T cells. By filter-spot ELISA (ELISPOT), the frequency of IFN-gamma-secreting gamma delta T cells was one-half of that of CD4+ T cells in response to M. tuberculosis, suggesting that gamma delta T cells on a per cell basis were more efficient producers of IFN-gamma than CD4+ T cells. In contrast, CD4+ T cells produced more IL-2 than gamma delta T cells, which correlated with diminished T cell proliferation of gamma delta T cells compared with CD4+ T cells. These results indicate that CD4+ and gamma delta T cell subsets have similar effector functions (cytotoxicity, IFN-gamma production) in response to M. tuberculosis-infected macrophages, despite differences in the Ags recognized, IL-2 production, and efficiency of IFN-gamma production.
Resumo:
Hybrid peptide segments containing contiguous alpha and gamma amino acid residues can form C-12 hydrogen bonded turns which may be considered as backbone expanded analogues of C-10 beta-turns) found in alpha alpha segments. Exploration of the regular hydrogen bonded conformations accessible for hybrid alpha gamma sequences is facilitated by the use of a stereochemically constrained gamma amino acid residue gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn), in which the two torsion angles about C-gamma-C-beta (theta(1)) and C-beta-C-alpha (theta(2)) are predominantly restricted to gauche conformations. The crystal structures of the octapeptides Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (1) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (2) reveal two distinct conformations for the Aib-Gpn segment. Peptide 1 forms a continuous helix over the Aib(2)-Aib(6) segment, while the peptide 2 forms beta-hairpin structure stabilized by four cross-strand hydrogen bonds with the Aib-Gpn segment forming a nonhelical C-12 turn. The robustness of the helix in peptide 1 in solution is demonstrated by NMR methods. Peptide 2 is conformationally fragile in solution with evidence of beta-hairpin conformations being obtained in methanol. Theoretical calculations permit delineation of the various C-12 hydrogen bonded structures which are energetically feasible in alpha gamma and gamma alpha sequences.
Resumo:
Titanium alloys like Ti-6A-4V are the backbone materials for aerospace, energy and chemical industries. Hypoeutectic boron addition to Ti-6Al-4V alloy produces a reduction in as-cast grain size by roughly an order of magnitude resulting in the possibility of avoiding ingot breakdown step and thereby reducing the processing cost. In the present study, ISM processed as-cast boron added Ti-6Al-4V alloy is deformed in (alpha+beta)-phase field, where alpha-lath bending seemed to be the dominating deformation mechanism.
Resumo:
Hyoscyamine 60-hydroxylase (H6H: EC 1.14.11.11), a key enzyme at the terminal step of tropane alkaloid biosynthesis, converts hyoscyamine to scopolamine. The accumulation of scopolamine in different organs, in particular the aerial parts for storage, is subject to the expression of hyoscyamine 6-phydroxylase as well as its transport from the site of synthesis. To understand the molecular basis of this regulation, we have analyzed, in parallel, the relative levels of hyoscyamine and scopolamine, and the accumulation of H6H (both protein and transcript) in leaves, stems and roots of D. metel. The root, stem and leaf tissues all contain about 0.51-0.65 mg g(-1) dry weight of scopolamine. Hyoscyamine content was extremely low in leaf and stem tissues and was about 0.28 mg g(-1) dry weight in the root tissue. H6H protein and its transcript were found only in roots but not in the aerial parts viz. stems and leaves. The immunolocalization studies performed on leaf, stem, root as well as hairy root tissues showed that H6H was present only in the pericycle cells of young lateral and hairy roots. These studies suggest that the conversion of hyoscyamine to scopolamine takes place in the root pericycle cells, and the alkaloid biosynthesized in the roots gets translocated to the aerial parts in D. metel. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The strategy of translationally fusing the alpha-and beta-subunits of human chorionic gonadotropin (hCG) into a single-chain molecule has been used to produce novel analogs of hCG. Previously we reported expression of a biologically active singlechain analog hCG alpha beta expressed using Pichia expression system. Using the same expression system, another analog, in which the alpha-subunit was replaced with the second beta-subunit, was expressed (hCG beta beta) and purified. hCG beta beta could bind to LH receptor with an affinity three times lower than that of hCG but failed to elicit any response. However, it could inhibit response to the hormone in vitro in a dose- dependent manner. Furthermore, it inhibited response to hCG in vivo indicating the antagonistic nature of the analog. However, it was unable inhibit human FSH binding or response to human FSH, indicating the specificity of the effect. Characterization of hCG alpha beta and hCG beta beta using immunological tools showed alterations in the conformation of some of the epitopes, whereas others were unaltered. Unlike hCG, hCG beta beta interacts with two LH receptor molecules. These studies demonstrate that the presence of the second beta-subunit in the single-chain molecule generated a structure that can be recognized by the receptor. However, due to the absence of alpha-subunit, the molecule is unable to elicit response. The strategy of fusing two beta-subunits of glycoprotein hormones can be used to produce antagonists of these hormones.
Resumo:
Designed octapeptides Boc-Leu-Val-Val-Aib-(D)Xxx-Leu- Val-Val-OMe ((D)Xxx = (D)Ala, 3a; (D)Val, 3c and (D)Pro, 5a) and Boc-Leu-Phe-Val-Aib-DAla-Leu-Phe-Val-OMe (3b) have been investigated to construct models of a stable type I' beta-turn nucleated hairpin and to generate systems for investigating helix-hairpin conformational transitions. Peptide 5a, which contains a central Aib-(D)Pro segment, is shown to adopt a stable type I' beta-turn nucleated hairpin structure, stabilized by four cross-strand hydrogen bonds. The stability of the structure in diverse solvents is established by the observation of all diagnostic NOEs expected in a beta-hairpin conformation. Replacement of (D)Pro5 by (D)Ala/(D)Val (3a-c) results in sequences that form beta-hairpins in hydrogen bonding solvents like CD3OH and DMSO-d(6). However, in CDCl3 evidence for population of helical conformations is obtained. Peptide 6b (Boc-Leu-Phe-Val-Aib-Aib-Leu-Phe-Val-OMe), which contains a centrally positioned Aib-Aib segment, provides a clear example of a system, which exhibits a helical conformation in CDCl3 and a significant population of both helices and hairpins in CD3OH and DMSO-d(6). The coexistence of multiple conformations is established by the simultaneous observation of diagnostic NOEs. Control over stereochemistry of the central beta-turn permits generation of models for robust beta-hairpins and also for the construction of systems that may be used to probe helix-hairpin conformational transitions. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Theoretical studies using density functional theory are carried out to understand the electronic structure and bonding and electronic properties of elemental beta-rhombohedral boron. The calculated band structure of ideal beta-rhombohedral boron (B-105) shows valence electron deficiency and depicts metallic behavior. This is in contrast to the experimental result that it is a semiconductor. To understand this ambiguity we discuss the electronic structure and bonding of this allotrope with cluster fragment approach using our recently proposed mno rule. This helps us to comprehend in greater detail the structure of B-105 and materials which are closely related to beta-rhombohedral boron. The molecular structures B12H12-2, B28H21+1, BeB27H21, LiB27H21-1, CB27H21+2, B57H36+3, Be3B54H36, and Li2CB54H36, and corresponding solids Li8Be3B102 and Li10CB102 are arrived at using these ideas and studied using first principles density functional theory calculations.
Resumo:
The effects of inserting unsubstituted omega-amino acids into the strand segments of model beta-hairpin peptides was investigated by using four synthetic decapeptides, Boc-Lcu-Val-Xxx-Val-D-Pro-Gly-Leu-Xxx-Val-Val- OMe: pepticle 1 (Xxx=Gly), pepticle 2 (Xxx=beta Gly=beta hGly=homoglycine, beta-glycine), pepticle 3 (Xxx=gamma Abu=gamma-aminobutyric acid), pepticle 4 (Xxx= delta Ava=delta-aminovaleric acid). H-1 NMR studies (500 MHz, methanol) reveal several critical cross-strand NOEs, providing evidence for P-hairpin conformations in peptides 2-4. In peptide 3, the NMR results support the formation of the nucleating turn, however, evidence for cross-strand registry is not detected. Single-crystal X-ray diffraction studies of peptide 3 reveal a beta-hairpin conformation for both molecules in the crystallographic asymmetric unit, stabilized by four cross-strand hydrogen bonds, with the gamma Abu residues accommodated within the strands. The D-Pro-Gly segment in both molecules (A,B) adopts a type II' beta-turn conformation. The circular dichroism spectrum for peptide 3 is characterized by a negative CD band at 229 rim, whereas for peptides 2 and 4, the negative band is centered at 225 nm, suggesting a correlation between the orientation of the amide units in the strand segments and the observed CD pattern.
Resumo:
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I' beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 -> 1 hydrogen bonds. In addition, a single 4 -> 1 hydrogen bond is also observed at the N-terminus. All live Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C-alpha-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean r values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
A variety of N-alkyl-beta-aminodiselenides have been synthesized in high yield from sulfamidates under mild reaction conditions using potassium selenocyanate and benzyltriethylammonium tetrathiomolybdate ([BnNEt3](2)MoS4) in a sequential, one-pot, multistep reaction. The tolerance of multifarious protecting groups under the reaction conditions is discussed. The methodology was successfully extended to the synthesis of selenocystine,3,3'-dialkylselenocystine, and 3,3'-diphenylisoselenocystine and their direct incorporation into peptides.
Resumo:
The literature review elucidates the mechanism of oxidation in proteins and amino acids and gives an overview of the detection and analysis of protein oxidation products as well as information about ?-lactoglobulin and studies carried out on modifications of this protein under certain conditions. The experimental research included the fractionation of the tryptic peptides of ?-lactoglobulin using preparative-HPLC-MS and monitoring the oxidation process of these peptides via reverse phase-HPLC-UV. Peptides chosen to be oxidized were selected with respect to their amino acid content which were susceptible to oxidation and fractionated according to their m/z values. These peptides were: IPAVFK (m/z 674), ALPMHIR (m/z 838), LIVTQTMK (m/z 934) and VLVLDTDYK (m/z 1066). Even though it was not possible to solely isolate the target peptides due to co-elution of various fractions, the percentages of target peptides in the samples were satisfactory to carry out the oxidation procedure. IPAVFK and VLVLDTDYK fractions were found to yield the oxidation products reviewed in literature, however, unoxidized peptides were still present in high amounts after 21 days of oxidation. The UV data at 260 and 280 nm enabled to monitor both the main peptides and the oxidation products due to the absorbance of aromatic side-chains these peptides possess. ALPMHIR and LIVTQTMK fractions were oxidatively consumed rapidly and oxidation products of these peptides were observed even on day 0. High rates of depletion of these peptides were acredited to the presence of His (H) and sulfur-containing side-chains of Met (M). In conclusion, selected peptides hold the potential to be utilized as marker peptides in ?-lactoglobulin oxidation.
Resumo:
Synthesis, aggregation behavior and in vitro cholesterol solubilization studies of 16-epi-pythocholic acid (3 alpha,12 alpha,16 beta-trihydroxy-5 beta-cholan-24-oic acid, EPCA) are reported. The synthesis of this unnatural epimer of pythocholic acid (3 alpha,12 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, PCA) involves a series of simple and selective chemical transformations with an overall yield of 21% starting from readily available cholic acid (CA). The critical micellar concentration (CMC) of 16-epi-pythocholate in aqueous media was determined using pyrene as a fluorescent probe. In vitro cholesterol solubilization ability was evaluated using anhydrous cholesterol and results were compared with those of other natural di-and trihydroxy bile acids. These studies showed that 16-epi-pythocholic acid (16 beta-hydroxy-deoxycholic acid) behaves similar to cholic acid (CA) and avicholic acid (3 alpha,7 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, ACA) in its aggregation behavior and cholesterol dissolution properties. (C) 2010 Elsevier Inc. All rights reserved.