999 resultados para basic density
Resumo:
Background-In adult human heart, both beta(1)- and beta(2)-adrenergic receptors mediate hastening of relaxation; however, it is unknown whether this also occurs in infant heart. We compared the effects of stimulation of beta(1)- and beta(2)-adrenergic receptors on relaxation and phosphorylation of phospholamban and troponin I in ventricle obtained from infants with tetralogy of Fallot. Methods and Results-Myocardium dissected from the right ventricular outflow tract of 27 infants (age range 2-1/2 to 35 months) with tetralogy of Fallot was set up to contract 60 times per minute. Selective stimulation of beta(1)-adrenergic receptors with (-)-norepinephrine (NE) and beta(2)-adrenergic receptors with (-)-epinephrine (EPI) evoked phosphorylation of phospholamban (at serine-16 and threonine-17) and troponin I and caused concentration-dependent increases in contractile force (-log EC50 [mol/L] NE 5.5+/-0.1, n=12; -EPI 5.6+/-0.1, n=13 patients), hastening of the time to reach peak force (-log EC50 [mol/L] NE 5.8+/--0.2; EPI 5.8+/-0.2) and 50% relaxation (-log EC50 [mol/L] NE 5.7+/-0.2: EPI 5.8+/-0.1), Ventricular membranes from Fallot infants, labeled with (-)-[I-125]-cyanopindolol, revealed a greater percentage of beta(1)- (71%) than beta(2)-adrenergic receptors (29%). Binding of (-)-epinephrine to beta(2)-receptors underwent greater GTP shifts than binding of (-)-norepinephrine to beta(1)-receptors. Conclusions-Despite their low density, beta(2)-adrenergic receptors are nearly as effective as beta(1)-adrenergic receptors of infant Fallot ventricle in enhancing contraction, relaxation, and phosphorylation of phospholamban and troponin I, consistent with selective coupling to G(s)-protein.
Resumo:
Magnetic resonance imaging (MRI) relies on the physical properties of unpaired protons in tissues to generate images. Unpaired protons behave like tiny bar magnets and will align themselves in a magnetic field. Radiofrequency pulses will excite these aligned protons to higher energy states. As they return to their original state, they will release this energy as radio waves. The frequency of the radio waves depends on the local magnetic field and by varying this over a subject, it is possible to build the images we are familiar with. In general, MRI has not been sufficiently sensitive or specific in the assessment of diffuse liver disease for clinical use. However, because of the specific characteristics of fat and iron, it may be useful in the assessment of hepatic steatosis and iron overload. Magnetic resonance imaging is useful in the assessment of focal liver disease, particularly in conjunction with contrast agents. Haemangiomas have a characteristic bright appearance on T-2 weighted images because of the slow flowing blood in dilated sinusoids. Focal nodular hyperplasia (FNH) has a homogenous appearance, and enhances early in the arterial phase after gadolinium injection, while the central scar typically enhances late. Hepatic adenomas have a more heterogenous appearance and also enhance in the arterial phase, but less briskly than FNH. Hepatocellular carcinoma is similar to an adenoma, but typically occurs in a cirrhotic liver and has earlier washout of contrast. The appearance of metastases depends on the underlying primary malignancy. Overall, MRI appears more sensitive and specific than computed tomography with contrast for the detection and evaluation of malignant lesions. (C) 2000 Blackwell Science Asia Pty Ltd.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.
Resumo:
The thalassinidean shrimp Trypea australiensis (the yabby) commonly occurs on intertidal sandflats and subtidal regions of sheltered embayments and estuaries along the east coast of Australia and is harvested commercially and recreationally for use as bait by anglers. The potential for counts of burrow openings to provide a reliable indirect estimate of the abundance of yabbies was examined on intertidal sandflats on North Stradbroke Island (Queensland, Australia). The relationship between the number of burrow openings and the abundance of yabbies was generally poor and also varied significantly through time, casting doubt on previous estimates of abundance for this species based on unvalidated hole counts. Spatial and temporal variation in population density, the size at maturity and the reproductive period of the yabby were also assessed. Except for an initial peak in abundance as a result of recruitment, the density of yabbies was constant throughout the study but considerably less than that estimated from a previous study in the same area. Ovigerous females were recorded at 3 mm carapace length (CL) which is smaller than previously recorded for this species and thalassinideans in general. Small ovigerous females were found throughout the study, including the summer months, which is unusual for thalassinideans in the intertidal zone. It was hypothesised that in the intertidal zone, small female yabbies may be able to balance the metabolic demands of reproduction and respiration at higher temperatures than can larger females allowing them to reproduce in the warmer months.
Resumo:
We report a prospective, randomized, multi-center, open-label 2-year trial of 81 postmenopausal women aged 53-79 years with at least one minimal-trauma vertebral fracture (VF) and low (T-score below 2) lumbar bone mineral density (BMD). Group HRT received piperazine estrone sulfate (PES) 0.625 - 1.25 mg/d +/- medroxyprogesterone acetate (MPA) 2.5 - 5 mg/d,- group HRT/D received HRT plus calcitriol 0.25 mug bd. All with a baseline dietary calcium (Ca) of < I g/d received Ca carbonate 0.6 g nocte. Final data were on 66 - 70 patients. On HRT/D, significant (P < 0.001) BNID increases from baseline by DXA were at total body - head, trochanter, Ward's, total hip, inter-trochanter and femoral shaft (% group mean Delta 4.2, 6.1, 9.3. 3.7. 3.3 and 3.3%, respectively). On HRT, at these significant Deltas were restricted to the trochanter and sites. si Wards. Significant advantages of HRT/D over HRT were in BMD of total body (- head), total hip and trochanter (all P = 0.01). The differences in mean Delta at these sites were 1.3, 2.6 and 3.9%. At the following, both groups Improved significantly -lumbar spine (AP and lateral), forearm shaft and ultradistal tibia/fibula. The weightbearing, site - specific benefits of the combination associated with significant suppression of parathyroid hormone-suggest a beneficial effect on cortical bone. Suppression of bone turnover was significantly greater on HRT/D (serum osteocalcin P = 0.024 and urinary hydroxyproline/creatinine ratio P = 0.035). There was no significant difference in the number of patients who developed fresh VFs during the trial (HRT 8/36, 22%; HRT/D 4/34, 12% - intention to treat); likewise in the number who developed incident nonvertebral fractures. This Is the first study comparing the 2 treatments in a fracture population. The results indicate a significant benefit of calcitriol combined with HRT on total body BMD and on BNID at the hip, the major site of osteoporotic fracture.
Resumo:
Effects of variation in larval quality on post-metamorphic performance in marine invertebrates are increasingly apparent. Recently, it has been shown that variation in offspring size can also strongly affect post-settlement survival, but variation in environmental conditions can mediate this effect. The quality of habitat into which marine invertebrate larvae settle can vary markedly, and 1 influence on quality is the number of conspecifics present. We tested the effects of settler size and settler density on early (1 wk after settlement) post-settlement survival in the field for the solitary ascidian Ciona intestinalis. Larger settlers survived better than smaller settlers, within and among groups of siblings. Increases in the density of settlers decreased survival, but the density-dependent effects were much stronger for smaller settlers. We suggest that larger settlers are better able to cope with intra-specific competition because they have greater energetic reserves or a greater capacity to feed than smaller settlers.
Resumo:
Exponential and sigmoidal functions have been suggested to describe the bulk density profiles of crusts. The present work aims to evaluate these conceptual models using high resolution X-radiography. Repacked seedbeds from two soil materials, air-dried or prewetted by capillary rise, were subjected to simulated rain, which resulted in three types of structural crusts, namely, slaking, infilling, and coalescing. Bulk density distributions with depth were generated using high-resolution (70 mum), calibrated X-ray images of slices from the resin-impregnated crusted seedbeds. The bulk density decreased progressively with depth, which supports the suggestion that a crust should be considered as a nonuniform layer. For the slaking and the coalescing crusts, the exponential function underestimated the strong change in bulk density across the morphologically defined transition between the crust and the underlying material; the sigmoidal function provided a better description. Neither of these crust models effectively described the shape of the bulk density profiles through the whole seedbed. Below the infilling and slaking crusts, bulk density increased linearly with depth as a result of slumping. In the coalescing crusted seedbed, the whole seedbed uniformly collapsed and most of the bulk density change within the crust could be ascribed to slumping (0.33 g cm(-3)) rather than to crusting (0.12 g cm(-3)). Finally, (i) X-radiography appears as a unique tool to generate high resolution bulk density profiles and (ii) in structural crusts, bulk density profiles could be modeled using the existing exponential and sigmoidal crusting models, provided a slumping model would be coupled.
Resumo:
Statement of the study: Based on data from ecological and analytic epidemiological studies, we have proposed that low prenatal vitamin D is a candidate risk-modifying factor for schizophrenia. Previously, we demonstrated that low prenatal vitamin D adversely affected brain development in neonatal rats (Eyles et al, 2003). Here we examine the impact of both prenatal and early life hypovitaminosis D on various outcomes in the adult rat brain. Methods: Female Sprague-Dawley rats were made vitamin D deficient via the use of a special diet (Dyets CA) and lighting conditions that excluded UVB radiation. Animals were kept under these conditions for 6 weeks then mated with males kept under normal conditions. Vitamin deplete dams were kept under these conditions during pregnancy. Offspring from two test groups were examined. Offspring were either reared with dams repleted with vitamin D at birth or remained under deplete conditions till weaning. Both test groups were weaned under normal vitamin D conditions and remained so till testing at adulthood. We compared the brains of adult offspring kept under both test conditions with animals from control environments. Summary of results: We found a significant persistent dose-related increase in lateral ventricle volume and alterations in anterior cingulate and prefrontal cortical cell densities (consistent with the known prodifferentiation properties of this steroid). In both test groups we observed a reduced expression of NGF as well as a down-regulation of transcripts coding for GABAA alpha 4 receptor and two neuronal structural elements; MAP2 and Neurofilament L. Conclusion: These findings provide further evidence that vitamin D is involved in brain development. An increase in prefrontal cortical cell density, a reduction neuronal structural elements and persistent ventriculomegaly are all common anatomical findings in the brains of patients with schizophrenia. The specific reduction in transcripts for neuronal structural proteins but not GFAP is also in accordance with the proposal that frontal cortical architecture in schizophrenia reflects a reduction in connectivity rather than a reduction in glial processes(Goldman-Rakic and Selemon, 1997). These findings confirm the biological plausibility of early life hypovitaminosis D as a risk factor for schizophrenia.
Resumo:
Photodynamic therapy (PDT) for cancer is a therapeutic modality in the treatment of tumors in which visible light is used to activate a photosensitizer. Cell membranes have been identified as an important intracellular target for singlet oxygen produced during the photochemical pathway. This study analyzed the cytotoxicity in specific cellular targets of a photosensitizer used in PDT in vitro. The photosensitizing effects of chloroaluminum phthalocyanine liposomal were studied on the mitochondria, cytoskeleton and endoplasmic reticulum of HeLa cells. Cells were irradiated with a diode laser working at 670 nm, energy density of 4.5 J/cm(2) and power density of 45 mW/cm(2). Fluorescence microscopic analysis of the mitochondria showed changes in membrane potential. After PDT treatment, the cytoskeleton and endoplasmic reticulum presented basic alterations in distribution. The combined effect of AlPHCl liposomal and red light in the HeLa cell line induced photodamage to the mitochondria, endoplasmic reticulum and actin filaments in the cytoskeleton. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density approximation. The results are valid for a trapping potential that is slowly varying relative to a correlation length. They allow a direct experimental test of the transition from the weak-coupling Gross-Pitaevskii regime to the strong-coupling, fermionic Tonks-Girardeau regime. We also calculate the average two-particle correlation which characterizes the bulk properties of the sample, and find that it can be well approximated by the value of the local pair correlation in the trap center.
Resumo:
We investigated two of the most studied relationships in the macroecological research program (species richness vs. body size and abundance vs. body size) of a local chironomid assemblage from southeastern Brazil. Although numerous Studies have examined these relationships, few have investigated how they vary at different temporal scales. We used data from a forested stream to document and examine these patterns at monthly intervals. Both the species body size distribution and the abundance-body size relationship varied temporally. In some months the body size distribution was skewed to the right. whereas in others it approached normality. We Found both linear relationships (with different values of slopes). and a polygonal pattern in the abundance-body size relationship. This temporal variation was not related to environmental variables. Our results suggest that body size relationships are temporally instable properties of this chironomid assemblage. (C) 2007 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.
Resumo:
Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.