971 resultados para atomistic defect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The core structure of <110] superdislocations in L10 TiAl was investigated with a view to clarifying their dissociation abilities and the mechanisms by which they may become sessile by self-locking. A detailed knowledge of the fine structure of dislocations is essential in analysing the origin of the various deformation features. Atomistic simulation of the core structure and glide of the screw <110] superdislocation was carried out using a bond order potential for ?-TiAl. The core structure of the screw <110] superdislocation was examined, starting with initial unrelaxed configurations corresponding to various dislocation dissociations discussed in the literature. The superdislocation was found to possess in the screw orientation either planar (glissile) or non-planar (sessile) core structures. The response of the core configurations to externally applied shear stress was studied. Some implications were considered of the dissociated configurations and their response to externally applied stress on dislocation dynamics, including the issue of dislocation decomposition, the mechanism of locking and the orientation dependence of the dislocation substructure observed in single-phase ?-TiAl. An unexpectedly rich and complex set of candidate core structures, both planar and non-planar, was found, the cores of which may transform under applied stress with consequent violation of Schmid's law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on atomistic simulations of the interactions between the dominant lattice dislocations in ?-TiAl (<1 0 1] superdislocations) with all three kinds of ?/?-lamellar boundaries in polysynthetically twinned (PST) TiAl. The purpose of this study is to clarify the early stage of lamellar boundary controlled plastic deformation in PST TiAl. The interatomic interactions in our simulations are described by a bond order potential for L10-TiAl which provides a proper quantum mechanical description of the bonding. We are interested in the dislocation core geometries that the lattice produces in proximity to lamellar boundaries and the way in which these cores are affected by the elastic and atomistic effects of dislocation-lamellar boundary interaction. We study the way in which the interfaces affect the activation of ordinary dislocation and superdislocation slip inside the ?-lamellae and transfer of plastic deformation across lamellar boundaries. We find three new phenomena in the atomic-scale plasticity of PST TiAl, particularly due to elastic and atomic mismatch associated with the 60° and 120° ?/?-interfaces: (i) two new roles of the ?/?-interfaces, i.e. decomposition of superdislocations within 120° and 60° interfaces and subsequent detachment of a single ordinary dislocation and (ii) blocking of ordinary dislocations by 60° and 120° interfaces resulting in the emission of a twinning dislocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental use of statins as stimulators of bone formation suggests they may have widespread applicability in the field of orthopaedics. With their combined effects on osteoblasts and osteoclasts, statins have the potential to enhance resorption of synthetic materials and improve bone ingrowth. In this study, the effect of oral and local administration of simvastatin to a 0 tricalcium phosphate (beta TCP)-filled defect around an implant was compared with recombinant human bone morphogenetic protein 2 (rhBMP2). On hundred and sixty-two Sprague-Dawley rats were assigned to treatment groups: local application of 0.1, 0.9 or 1.7 mg of simvastatin, oral simvastatin at 5, 10 or 50 mg kg(-1) day(-1) for 20 days, local delivery of I or 10 mu g of rhBMP2, or control. At 6 weeks rhBMP2 increased serum tartrate-resistant acid phosphatase 5b levels and reduced PTCP area fraction, particle size and number compared with control, suggesting increased osteoclast activity. There was reduced stiffness and increased mechanical strength with this treatment. Local simvastatin resulted in a decreased mineral apposition rate at 6 weeks and increased fibrous area fraction, PTCP area fraction, particle size and number at 26 weeks. Oral simvastatin had no effect compared with control. Local application of rhBMP2 increased resorption and improved mechanical strength whereas simvastatin was detrimental to healing. Oral simvastatin was ineffective at promoting either ceramic resorption or bone formation. The effect of statins on the repair of bone defects with graft substitute materials is influenced by its bioavailability. Thus, further studies on the optimal delivery system are needed. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently available synthetic bone substitutes perform poorly compared to autograft. It is hoped that by adding osteogenic growth factors to the materials, new bone formation could be increased and the clinical outcome improved. In this study, IGF-1, bFGF and TGFbeta1, alone and in combination, were absorbed onto a carrier of P-tricalcium phosphate (PTCP) and implanted into a defect around a hydroxyapatite-coated, stainless steel implant in the proximal tibia of rat in a model of revision arthroplasty. Animals were sacrificed at 6 and 26 weeks for routine histology and histomorphometry and mechanical push out tests. The results show that only bFGF had a significant effect on ceramic resorption. The groups that received bFGF and bFGF in combination with TGFbeta1 had smaller and fewer betaTCP particles remaining in the defect at 6 and 26 weeks. No growth factor combination significantly enhanced new bone formation or the mechanical strength of the implant. These results indicate that, of the growth factors tested, only bFGF had any beneficial effect on the host response to the implant, perhaps by delaying osteoblast differentiation and thereby prolonging osteoclast access to the ceramic. (C) 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic bone substitutes provide an alternative to autograft but do not give equivalent clinical results. Their performance may be enhanced by adding osteogenic growth factors. In this study, TGFbeta1 was absorbed on to a carrier of 0 tricalcium phosphate and Gelfoam(R) and used to fill a defect around a tibial implant in a rat model of revision arthoplasty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the question of the observed pinning of 1/2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear amplitude modulation dynamics of electrostatic oscillations of massive charged defects in a three-component pair plasma is investigated; i.e. doped pair-ion plasmas (anticipating the injection of a massive charged component in the background; e.g. in fullerene experiments). Ton-acoustic oscillations in electron-positron-ion (e-p-i) plasmas are also covered, in the appropriate limit. Linear and nonlinear effects (MI, envelope modes) are discussed. The role of the temperature and density ratio between the pair species is stressed.