962 resultados para assimilation window
Resumo:
Data assimilation (DA) systems are evolving to meet the demands of convection-permitting models in the field of weather forecasting. On 19 April 2013 a special interest group meeting of the Royal Meteorological Society brought together UK researchers looking at different aspects of the data assimilation problem at high resolution, from theory to applications, and researchers creating our future high resolution observational networks. The meeting was chaired by Dr Sarah Dance of the University of Reading and Dr Cristina Charlton-Perez from the MetOffice@Reading. The purpose of the meeting was to help define the current state of high resolution data assimilation in the UK. The workshop assembled three main types of scientists: observational network specialists, operational numerical weather prediction researchers and those developing the fundamental mathematical theory behind data assimilation and the underlying models. These three working areas are intrinsically linked; therefore, a holistic view must be taken when discussing the potential to make advances in high resolution data assimilation.
Resumo:
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual information, and the relative entropy. These three measures have all been studied in the case of Gaussian data assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but also on the metric used to measure the observation impact and the source of the non-Gaussian structure.
Resumo:
Variational data assimilation is commonly used in environmental forecasting to estimate the current state of the system from a model forecast and observational data. The assimilation problem can be written simply in the form of a nonlinear least squares optimization problem. However the practical solution of the problem in large systems requires many careful choices to be made in the implementation. In this article we present the theory of variational data assimilation and then discuss in detail how it is implemented in practice. Current solutions and open questions are discussed.
Resumo:
This article shows how one can formulate the representation problem starting from Bayes’ theorem. The purpose of this article is to raise awareness of the formal solutions,so that approximations can be placed in a proper context. The representation errors appear in the likelihood, and the different possibilities for the representation of reality in model and observations are discussed, including nonlinear representation probability density functions. Specifically, the assumptions needed in the usual procedure to add a representation error covariance to the error covariance of the observations are discussed,and it is shown that, when several sub-grid observations are present, their mean still has a representation error ; socalled ‘superobbing’ does not resolve the issue. Connection is made to the off-line or on-line retrieval problem, providing a new simple proof of the equivalence of assimilating linear retrievals and original observations. Furthermore, it is shown how nonlinear retrievals can be assimilated without loss of information. Finally we discuss how errors in the observation operator model can be treated consistently in the Bayesian framework, connecting to previous work in this area.
Resumo:
One of the prerequisites for achieving skill in decadal climate prediction is to initialize and predict the circulation in the Atlantic Ocean successfully. The RAPID array measures the Atlantic Meridional Overturning Circulation (MOC) at 26°N. Here we develop a method to include these observations in the Met Office Decadal Prediction System (DePreSys). The proposed method uses covariances of overturning transport anomalies at 26°N with ocean temperature and salinity anomalies throughout the ocean to create the density structure necessary to reproduce the observed transport anomaly. Assimilating transport alone in this way effectively reproduces the observed transport anomalies at 26°N and is better than using basin-wide temperature and salinity observations alone. However, when the transport observations are combined with in situ temperature and salinity observations in the analysis, the transport is not currently reproduced so well. The reasons for this are investigated using pseudo-observations in a twin experiment framework. Sensitivity experiments show that the MOC on monthly time-scales, at least in the HadCM3 model, is modulated by a mechanism where non-local density anomalies appear to be more important for transport variability at 26°N than local density gradients.
Resumo:
This paper details a strategy for modifying the source code of a complex model so that the model may be used in a data assimilation context, {and gives the standards for implementing a data assimilation code to use such a model}. The strategy relies on keeping the model separate from any data assimilation code, and coupling the two through the use of Message Passing Interface (MPI) {functionality}. This strategy limits the changes necessary to the model and as such is rapid to program, at the expense of ultimate performance. The implementation technique is applied in different models with state dimension up to $2.7 \times 10^8$. The overheads added by using this implementation strategy in a coupled ocean-atmosphere climate model are shown to be an order of magnitude smaller than the addition of correlated stochastic random errors necessary for some nonlinear data assimilation techniques.
Resumo:
The East China Sea is a hot area for typhoon waves to occur. A wave spectra assimilation model has been developed to predict the typhoon wave more accurately and operationally. This is the first time where wave data from Taiwan have been used to predict typhoon wave along the mainland China coast. The two-dimensional spectra observed in Taiwan northeast coast modify the wave field output by SWAN model through the technology of optimal interpolation (OI) scheme. The wind field correction is not involved as it contributes less than a quarter of the correction achieved by assimilation of waves. The initialization issue for assimilation is discussed. A linear evolution law for noise in the wave field is derived from the SWAN governing equations. A two-dimensional digital low-pass filter is used to obtain the initialized wave fields. The data assimilation model is optimized during the typhoon Sinlaku. During typhoons Krosa and Morakot, data assimilation significantly improves the low frequency wave energy and wave propagation direction in Taiwan coast. For the far-field region, the assimilation model shows an expected ability of improving typhoon wave forecast as well, as data assimilation enhances the low frequency wave energy. The proportion of positive assimilation indexes is over 81% for all the periods of comparison. The paper also finds that the impact of data assimilation on the far-field region depends on the state of the typhoon developing and the swell propagation direction.
Resumo:
Operational forecasting centres are currently developing data assimilation systems for coupled atmosphere-ocean models. Strongly coupled assimilation, in which a single assimilation system is applied to a coupled model, presents significant technical and scientific challenges. Hence weakly coupled assimilation systems are being developed as a first step, in which the coupled model is used to compare the current state estimate with observations, but corrections to the atmosphere and ocean initial conditions are then calculated independently. In this paper we provide a comprehensive description of the different coupled assimilation methodologies in the context of four dimensional variational assimilation (4D-Var) and use an idealised framework to assess the expected benefits of moving towards coupled data assimilation. We implement an incremental 4D-Var system within an idealised single column atmosphere-ocean model. The system has the capability to run both strongly and weakly coupled assimilations as well as uncoupled atmosphere or ocean only assimilations, thus allowing a systematic comparison of the different strategies for treating the coupled data assimilation problem. We present results from a series of identical twin experiments devised to investigate the behaviour and sensitivities of the different approaches. Overall, our study demonstrates the potential benefits that may be expected from coupled data assimilation. When compared to uncoupled initialisation, coupled assimilation is able to produce more balanced initial analysis fields, thus reducing initialisation shock and its impact on the subsequent forecast. Single observation experiments demonstrate how coupled assimilation systems are able to pass information between the atmosphere and ocean and therefore use near-surface data to greater effect. We show that much of this benefit may also be gained from a weakly coupled assimilation system, but that this can be sensitive to the parameters used in the assimilation.
Resumo:
This chapter focuses on critical responses to Alfred Hitchcock’s Rear Window, especially their construction of disability. The suggestion is that such criticism takes the disabled body to be both necessary and superfluous to the meaning of the film, a difficulty that, I argue, can be read more widely within film theory. Ever since Christian Metz’s ‘the Imaginary Signifier’, the condition of being ‘bound to a wheelchair’ is understood to have a resonance for theories of film spectatorship, but only ever in a sense that does away with the wheelchair as a mark of difference.
Resumo:
We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.
Resumo:
The 2014 Graham proposals aimed at reducing recidivism are unlikely to achieve the desired goals. It is argued that due consideration must be had for the future of the rescued entity. Further, both the viability review and the proposed capital structure of the rescued entity must be carefully assessed.
Resumo:
The question is addressed whether using unbalanced updates in ocean-data assimilation schemes for seasonal forecasting systems can result in a relatively poor simulation of zonal currents. An assimilation scheme, where temperature observations are used for updating only the density field, is compared to a scheme where updates of density field and zonal velocities are related by geostrophic balance. This is done for an equatorial linear shallow-water model. It is found that equatorial zonal velocities can be detoriated if velocity is not updated in the assimilation procedure. Adding balanced updates to the zonal velocity is shown to be a simple remedy for the shallow-water model. Next, optimal interpolation (OI) schemes with balanced updates of the zonal velocity are implemented in two ocean general circulation models. First tests indicate a beneficial impact on equatorial upper-ocean zonal currents.
Resumo:
The weak-constraint inverse for nonlinear dynamical models is discussed and derived in terms of a probabilistic formulation. The well-known result that for Gaussian error statistics the minimum of the weak-constraint inverse is equal to the maximum-likelihood estimate is rederived. Then several methods based on ensemble statistics that can be used to find the smoother (as opposed to the filter) solution are introduced and compared to traditional methods. A strong point of the new methods is that they avoid the integration of adjoint equations, which is a complex task for real oceanographic or atmospheric applications. they also avoid iterative searches in a Hilbert space, and error estimates can be obtained without much additional computational effort. the feasibility of the new methods is illustrated in a two-layer quasigeostrophic model.
Resumo:
The ring-shedding process in the Agulhas Current is studied using the ensemble Kalman filter to assimilate geosat altimeter data into a two-layer quasigeostrophic ocean model. The properties of the ensemble Kalman filter are further explored with focus on the analysis scheme and the use of gridded data. The Geosat data consist of 10 fields of gridded sea-surface height anomalies separated 10 days apart that are added to a climatic mean field. This corresponds to a huge number of data values, and a data reduction scheme must be applied to increase the efficiency of the analysis procedure. Further, it is illustrated how one can resolve the rank problem occurring when a too large dataset or a small ensemble is used.