860 resultados para array microstructure
Resumo:
The mixed-signal and analog design on a pre-diffused array is a challenging task, given that the digital array is a linear matrix arrangement of minimum-length transistors. To surmount this drawback a specific discipline for designing analog circuits over such array is required. An important novel technique proposed is the use of TAT (Trapezoidal Associations of Transistors) composite transistors on the semi-custom Sea-Of-Transistors (SOT) array. The analysis and advantages of TAT arrangement are extensively analyzed and demonstrated, with simulation and measurement comparisons to equivalent single transistors. Basic analog cells were also designed as well in full-custom and TAT versions in 1.0mm and 0.5mm digital CMOS technologies. Most of the circuits were prototyped in full-custom and TAT-based on pre-diffused SOT arrays. An innovative demonstration of the TAT technique is shown with the design and implementation of a mixed-signal analog system, i. e., a fully differential 2nd order Sigma-Delta Analog-to-Digital (A/D) modulator, fabricated in both full-custom and SOT array methodologies in 0.5mm CMOS technology from MOSIS foundry. Three test-chips were designed and fabricated in 0.5mm. Two of them are IC chips containing the full-custom and SOT array versions of a 2nd-Order Sigma-Delta A/D modulator. The third IC contains a transistors-structure (TAT and single) and analog cells placed side-by-side, block components (Comparator and Folded-cascode OTA) of the Sigma-Delta modulator.
Resumo:
The objective of this study is to investigate whether the relationship between order ow and the spot exchange rate stems from the fact that the ow aggregates information on dispersed economic fundamentals in the economy. To perform this test, a database that includes all transactions of the commercial and nancial segments of the Brazilian primary foreign exchange market between January of 1999 and May of 2008 was used. We show that the order ow was partly responsible for variations in in ation expectations over the time period and that this relationship did not remain robust, drawing comparisons with other fundamentals such as GDP and Industrial Production.
Resumo:
NASCIMENTO,R.M. et al.Interface microstructure of alumina mechanically metallized with Ti brazed to Fe–Ni–Co using different fillers. Materials Science and Engineering A, v.466, n.1/2, p. 195-200, 2007.
Resumo:
This research studies the sintering of ferritic steel chips from the machining process. Were sintered metal powder obtained from machining process chips for face milling of a ferritic steel. The chip was produced by machining and characterized by SEM and EDS, and underwent a process of high energy mill powder characterized also by SEM and EDS. Were constructed three types of matrixes for uniaxial compression (relation l / d greater than 2.5). The differences in the design of the matrixes were essentially in the direction of load application, which for cylindrical case axial direction, while for the rectangular arrays, the longer side. Two samples were compressed with different geometries, a cylindrical and rectangular with the same compaction pressure of 700 MPa. The samples were sintered in a vacuum resistive furnace, heating rate 20 °C / min., isotherm 1300 °C for 60 minutes, and cooling rate of 25 °C / min to room temperature. The starting material of the rectangular sample was further annealed up to temperature of 800 ° C for 30 min. Sintered samples were characterized by scanning electron microscopy, optical microscopy and EDS. The sample compressed in the cylindrical matrix did not show a regular density reflecting in the sintered microstructure revealed by the irregular geometry of the pores, characterizing that the sintering was not complete, reaching only the second phase. As for the specimen compacted in the rectangular array, the analysis performed by scanning electron microscopy, optical microscopy and EDS indicate a good densification, and homogeneous microstructure in their full extent. Additionally, the EDS analyzes indicate no significant changes in chemical composition in the process steps. Therefore, it is concluded that recycling of chips, from the processed ferritic steel is feasible by the powder metallurgy. It makes possible rationalize raw material and energy by manufacture of known properties components from chips generated by the machining process, being benefits to the environment
Resumo:
In the present work, we report the use of bacterial colonies to optimize macroarray technique. The devised system is significantly cheaper than other methods available to detect large-scale differential gene expression. Recombinant Escherichia coli clones containing plasmid-encoded copies of 4,608 individual expressed sequence tag (ESTs) were robotically spotted onto nylon membranes that were incubated for 6 and 12 h to allow the bacteria to grow and, consequently, amplify the cloned ESTs. The membranes were then hybridized with a beta-lactamase gene specific probe from the recombinant plasmid and, subsequently, phosphorimaged to quantify the microbial cells. Variance analysis demonstrated that the spot hybridization signal intensity was similar for 3,954 ESTs (85.8%) after 6 h of bacterial growth. Membranes spotted with bacteria colonies grown for 12 h had 4,017 ESTs (87.2%) with comparable signal intensity but the signal to noise ratio was fivefold higher. Taken together, the results of this study indicate that it is possible to investigate large-scale gene expression using macroarrays based on bacterial colonies grown for 6 h onto membranes.
Resumo:
This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The chemical and electrochemical behaviour of the Ti-1 5V-3Cr-3Sn-3Al alloy in Kroll reagent has been studied after ageing at 350-600degreesC, to optimise metallographic etching. Etching tests and polarisation curves showed that samples aged at higher temperatures have been more susceptible to corrosion. It has been attributed to the formation of intra- and intergranular alpha-phase precipitates during ageing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a new approach to develop Field Programmable Analog Arrays (FPAAs),(1) which avoids excessive number of programming elements in the signal path, thus enhancing the performance. The paper also introduces a novel FPAA architecture, devoid of the conventional switching and connection modules. The proposed FPAA is based on simple current mode sub-circuits. An uncompounded methodology has been employed for the programming of the Configurable Analog Cell (CAC). Current mode approach has enabled the operation of the FPAA presented here, over almost three decades of frequency range. We have demonstrated the feasibility of the FPAA by implementing some signal processing functions.
Resumo:
PbTiO3 thin films were deposited on Si(100) via hybrid chemical method and crystallized between 400 and 700 degreesC to study the effect of the crystallization kinetics on structure and microstructure of these materials. X-ray diffraction (XRD) technique was used to study the structure of the crystallized films. In the temperature range investigated, the lattice strain (c/a) presented a maximum value (c/a = 1.056) for film crystallized at 600 degreesC for I h. Atomic force microscopy (AFM) was used in investigation of the microstructure of the films. The rms roughness of the films linearly increases with temperature and ranged from 1.25 to 9.04 nm while the grain sizes ranged from 130.6 to 213.6 nm. Greater grain size was observed for film crystallized at 600 degreesC for 1 h. (C) 2002 Elsevier B.V. S.A. All rights reserved.
Resumo:
Low molecular weight fractions of polyisoprene extracted from Ficus elastica Herb. ex Hornem. were studied by C-13-NMR. The identification of 2-3 trans terminal units at the end of the polymer chain needed the acquisition of more than 17 000 transients. (C) 2000 Elsevier B.V. Ltd. All rights reserved.