968 resultados para arbuscular mycorrhizal (AM) fungi
Resumo:
Mycorrhizal associations occur in a range of habitats in which soils are subject to low temperature (≤15 °C) for a significant part of the year. Despite this, most of our understanding of mycorrhizal fungi and their interactions with their plant hosts is based on physiological investigations conducted in the range 20–37 °C using fungi of temperate origin. Comparatively little consideration has been given to the cold edaphic conditions in which many mycorrhizas survive and prosper, and the physiological and ecological consequences of their low temperature environments. In this review, we consider the distribution and persistence of arbuscular and ectomycorrhizal mycorrhizal associations in cold environments and highlight progress in understanding adaptations to freezing resistance and nutrient acquisition at low temperature in mycorrhizal fungi.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was evaluate the response of two coffee cultivars (tolerant and sensitive to aluminum - Al), inoculated or not by two arbuscular mycorriza fungi (AMF), Gigaspora margarita and Glomus etunicatum, in cerrado Oxisol, with different base saturation. This experiment was conducted under greenhouse conditions, with a complete randomized design, in a 2x3x2 factorial scheme, consisting of 2 cultivars (tolerante and sensitive to Al), 3 treatments with mycorrhizal (inoculated with two species of AMF and without inoculation) and 3 levels of soil base saturation (30, 45 and 53 V%), with five replicates per treatment. The variables were: plant height, stem diameter, leaf area, shoot dry weight, root fresh weight, nitrate reductase activity, chlorophyll concentration, root colonization and number of AMF spores. Mycorrhizae isolates promoted greater response of coffee plants, in acid soil with high concentration of Al, but this response was observed for both cultivars when plants were colonized by G. margarita. The cultivars evaluated showed no differences in Al tolerance when non inoculated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate the effect of inoculation of arbuscular mycorrhizae fungi (AMF) and rhizobium on rooting, growth and nutrition of seedlings of angico-red (Anadenanthera macrocarpa (Benth) Brenan) propagated by minicutting. Six progenies were used, of which were prepared cuttings with a pair of complete leaves. It was used a 55 cm(3)container filled with commercial substrate Bioplant (R). Four treatments were tested: 8 kg m-3 of superphosphate (SS) added to substrate; 4 kg m-3 SS added to substrate; 4 kg m-3 SS added to substrate and adition of a suspension solution containing rhizobium; 4 kg m-3 SS and suspension solution containing rhizobium plus 5 g of soil contaminated by AMF spores. There was no interaction among treatments for survival rate of cuttings and roots observed at bottom of the container, evaluated in the greenhouse exit (30 days) and the shade house exit (40 days), probably because the root system was still in formation. There were differences among the progeny for survival rate of the shoots, the percentage of cuttings with roots observed at bottom of the container, height, stem diameter and shoot dry weight. The evaluations of the growth characteristics of the cuttings in, particularly with respect to survival at full sun (140 days), demonstrate the efficiency of rhizobium and AMF on seedling production of this species. We conclude that the symbiotic association with rhizobium and / or FMA favors the production of seedlings of A. macrocarpa by minicutting.
Resumo:
Disentangling biotic and abiotic drivers of wild mushroom fruiting is fraught with difficulties because mycelial growth is hidden belowground, symbiotic and saprotrophic supply strategies may interact, and myco-ecological observations are often either discontinuous or too short. Here, we compiled and analyzed 115 417 weekly fungal fruit body counts from permanent Swiss inventories between 1975 and 2006. Mushroom fruiting exhibited an average autumnal delay of 12 days after 1991 compared with before, the annual number of fruit bodies increased from 1801 to 5414 and the mean species richness doubled from 10 to 20. Intra- and interannual coherency of symbiotic and saprotrophic mushroom fruiting, together with little agreement between mycorrhizal yield and tree growth suggests direct climate controls on fruit body formation of both nutritional modes. Our results contradict a previously reported declining of mushroom harvests and propose rethinking the conceptual role of symbiotic pathways in fungi-host interaction. Moreover, this conceptual advancement may foster new cross-disciplinary research avenues, and stimulate questions about possible amplifications of the global carbon cycle, as enhanced fungal production in moist mid-latitude forests rises carbon cycling and thus increases greenhouse gas exchanges between terrestrial ecosystems and the atmosphere.
Resumo:
•Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. •We followed symbiotic carbon (C)–N exchange in a large-scale boreal pine forest experiment by tracing 13CO2 absorbed through tree photosynthesis and 15N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. •We detected little 15N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of 15N from soil microbes and root tips to tree foliage. •These results were tested in a model for C–N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply.
Resumo:
• Premise of the study: The presence of compatible fungi is necessary for epiphytic orchid recruitment. Thus, identifying associated mycorrhizal fungi at the population level is essential for orchid conservation. Recruitment patterns may also be conditioned by factors such as seed dispersal range and specific environmental characteristics. • Methods: In a forest plot, all trees with a diameter at breast height >1 cm and all individuals of the epiphytic orchid Epidendrum rhopalostele were identified and mapped. Additionally, one flowering individual of E. rhopalostele per each host tree was randomly selected for root sampling and DNA extraction. • Key results: A total of 239 E. rhopalostele individuals were located in 25 of the 714 potential host trees. Light microscopy of sampled roots showed mycorrhizal fungi in 22 of the 25 sampled orchids. Phylogenetic analysis of ITS1-5.8S-ITS2 sequences yielded two Tulasnella clades. In four cases, plants were found to be associated with both clades. The difference between univariate and bivariate K functions was consistent with the random labeling null model at all spatial scales, indicating that trees hosting clades A and B of Tulasnella are not spatially segregated. The analysis of the inhomogenous K function showed that host trees are not clustered, suggesting no limitations to population-scale dispersal. χ2 analysis of contingency tables showed that E. rhopalostele is more frequent on dead trees than expected. • Conclusions: Epidendrum rhopalostele establishes mycorrhizal associations with at least two different Tulasnella species. The analysis of the distribution patterns of this orchid suggests a microsite preference for dead trees and no seed dispersal limitation.
Resumo:
Transcripts for two genes expressed early in alfalfa nodule development (MsENOD40 and MsENOD2) are found in mycorrhizal roots, but not in noncolonized roots or in roots infected with the fungal pathogen Rhizoctonia solani. These same two early nodulin genes are expressed in uninoculated roots upon application of the cytokinin 6-benzylaminopurine. Correlated with the expression of the two early nodulin genes, we found that mycorrhizal roots contain higher levels of trans-zeatin riboside than nonmycorrhizal roots. These data suggest that there may be conservation of signal transduction pathways between the two symbioses—nitrogen-fixing nodules and phosphate-acquiring mycorrhizae.
Resumo:
Nursery grown seedlings are an essential part of the forestry industry. These seedlings are grown under high nutrient conditions caused by fertilization. Though grown in a controlled environment, symbionts such as ectomycorrhizal fungi (EcMF) are often found in these conditions. To examine the effects of EcMF in these conditions, colonized Picea glauca seedlings were collected from Toumey Nursery in Watersmeet, MI. After collection, the EcMF present were morphotyped, and seedlings with different morphotypes were divided equally into two treatment types- fertilized and unfertilized. Seedlings received treatment for one growing season. After that time, seedlings were collected, ectomycorrhizas identified using morphotyping and DNA sequencing, and seedlings were analyzed for differences in leaf nutrient concentration, content, root to shoot ratio, total biomass, and EcMF community structure. DNA sequencing identified 5 unique species groups- Amphinema sp. 1, Amphinema sp. 5, Thelephora terrestris, Sphaerosporella brunnea, and Boletus variipes. In the unfertilized treatment it was found that Amphinema sp. 1 strongly negatively impacted foliar N concentration. In fertilized seedlings, Thelephora terrestris had a strong negative impact on foliar phosphorus concentration, while Amphinema sp. 1 positively impacted foliar boron, magnesium, manganese, and phosphorus concentration. In terms of content, Amphinema sp. 1 led to significantly higher content of manganese and boron in fertilized treatments, as well as elevated phosphorus in unfertilized seedlings. Amphinema sp. 5 had a significant negative effect on phosphorus content. When examining root to shoot ratio and biomass, those seedlings with more non-mycorrhizal tips had a higher root to shoot ratio. Findings from the study shed light on the interactions of the species. Amphinema sp. 5 shows very different functionality than Amphinema sp. 1. Amphinema sp. 1 appears to have the highest positive effect on seedling nutrition when in both fertilized and unfertilized environments. Amphinema sp. 5 and T. terrestris appear to behave parasitically in both fertilized and unfertilized conditions.
Resumo:
Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
Com o principal objetivo de fornecer ferramentas para auxiliar na implementação do manejo sustentável de peixes ornamentais na Reserva de Desenvolvimento Sustentável Amanã, Amazonas, foi realizado o estudo da biologia reprodutiva de Heros efasciatus Heckel, 1840, um ciclídeo com potencial ornamental e com poucos trabalhos sobre a sua biologia e ecologia, apesar de já ser comercializado em algumas regiões amazônicas. Coletas bimestrais foram realizadas de fevereiro de 2006 a janeiro de 2007 em dez igarapés contribuintes do Lago Amanã e Urini, sendo utilizados três aparelhos de pesca (rede de arrasto, rapiché e armadilha tipo matapi) e ainda galhadas artificiais nas amostragens realizadas próximas aos lagos. Foram capturados 140 exemplares de H. efasciatus, sendo 50 fêmeas, 42 machos, e 46 indivíduos cujo sexo não foi identificado devido ao pequeno tamanho. O tipo de crescimento encontrado foi isométrico, sendo que o maior indivíduo observado apresentava 174 mm e o menor 14 mm. Os resultados encontrados auxiliarão na adoção de medidas de manejo, como a determinação de tamanhos mínimos de captura, superiores aos tamanhos médios de maturação (97 mm para as fêmeas) e o estabelecimento de períodos de defeso durante a época de sua reprodução (outubro a janeiro). A pequena abundância de indivíduos da espécie, quando comparada com o total de exemplares capturados (apenas 0,07%) e a baixa fecundidade média, de 2502 ovócitos, indica que se deve trabalhar anualmente apenas com um pequeno número de indivíduos, a fim de garantir a continuidade do estoque.
Resumo:
The present paper studies the influence of different nutrients for the production of two cellulolytic enzymes: endo beta-1.4 glucanase and exo beta-1.4 glucanase by anaerobic fungi taken from cow rumen, that were fed a diet of corn silage and Brachiaria decumbens grass hay. During the enzymatic degradation assays, it was observed that the addition of some essential nutrients in the formulation of the culture medium contributed positively in the cellulolytic enzyme production, with exception of riboflavin. Such results contributed in the establishment of an effective method for the evaluation of enzymatic activities in anaerobic fibrolytic fungi. In this work, nutrients added to enrich the culture medium have successfully proven that they can be used as inoculating agents (inductors) in diets rich in ensilage with law nutritive value.
Resumo:
The present study focuses on potential agents of chromoblastomycosis and other endemic diseases in the state of Parana, Southern Brazil. Using a highly selective protocol for chaetothyrialean black yeasts and relatives, environmental samples from the living area of symptomatic patients were analysed. Additional strains were isolated from creosote-treated wood and hydrocarbon-polluted environments, as such polluted sites have been supposed to enhance black yeast prevalence. Isolates showed morphologies compatible with the traditional etiological agents of chromoblastomycosis, e.g. Fonsecaea pedrosoi and Phialophora verrucosa, and of agents of subcutaneous or systemic infections like Cladophialophora bantiana and Exophiala jeanselmei. Some agents of mild disease were indeed encountered. However, molecular analysis proved that most environmental strains differed from known etiologic agents of pronounced disease syndromes: they belonged to the same order, but mostly were undescribed species. Agents of chromoblastomycosis and systemic disease thus far are prevalent on the human host. The hydrocarbon-polluted environments yielded yet another spectrum of chaetothyrialean fungi. These observations are of great relevance because they allow us to distinguish between categories of opportunists, indicating possible differences in pathogenicity and virulence.