962 resultados para allo-HSCT, GvL, GvHD, cDNA-expression cloning, allo-reactive T cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primer extension and RACE (rapid amplification of cDNA ends) assays were used to identify and sequence the 5' terminus of mouse ob mRNA. This sequence was used to obtain a recombinant bacteriophage containing the first exon of the encoding gene. DNA sequence analysis of the region immediately upstream of the first exon of the mouse ob gene revealed DNA sequences corresponding to presumptive cis-regulatory elements. A canonical TATA box was observed 30-34 base pairs upstream from the start site of transcription and a putative binding site for members of the C/EBP family of transcription factors was identified immediately upstream from the TATA box. Nuclear extracts prepared from primary adipocytes contained a DNA binding activity capable of avid and specific interaction with the putative C/EBP response element; antibodies to C/EBP alpha neutralized the DNA binding activity present in adipocyte nuclear extracts. When linked to a firefly luciferase reporter and transfected into primary adipocytes, the presumptive promoter of the mouse ob gene facilitated luciferase expression. When transfected into HepG2 cells, which lack C/EBP alpha, the mouse ob promoter was only weakly active. Supplementation of C/EBP alpha by cotransfection with a C/EBP alpha expression vector markedly stimulated luciferase expression. Finally, an ob promoter variant mutated at the C/EBP response element was inactive in both primary adipocytes and HepG2 cells. These observations provide evidence for identification of a functional promoter capable of directing expression of the mouse ob gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we have determined the kinetics of constitutive expression of a panel of cytokines [interleukin (IL) 2, IL-4, IL-6, IL-10, interferon gamma (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha)] in sequential peripheral blood mononuclear cell samples from nine individuals with primary human immunodeficiency virus infection. Expression of IL-2 and IL-4 was barely detected in peripheral blood mononuclear cells. However, substantial levels of IL-2 expression were found in mononuclear cells isolated from lymph node. Expression of IL-6 was detected in only three of nine patients, and IL-6 expression was observed when transition from the acute to the chronic phase had already occurred. Expression of IL-10 and TNF-alpha was consistently observed in all patients tested, and levels of both cytokines were either stable or progressively increased over time. Similar to IL-10 and TNF-alpha, IFN-gamma expression was detected in all patients; however, in five of nine patients, IFN-gamma expression peaked very early during primary infection. The early peak in IFN-gamma expression coincided with oligoclonal expansions of CD8+ T cells in five of six patients, and CD8+ T cells mostly accounted for the expression of this cytokine. These results indicate that high levels of expression of proinflammatory cytokines are associated with primary infection and that the cytokine response during this phase of infection is strongly influenced by oligoclonal expansions of CD8+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A HeLa cDNA expression library was screened for human polypeptides that interacted with the poliovirus RNA-dependent RNA polymerase, 3D, using the two-hybrid system in the yeast Saccharomyces cerevisiae. Sam68 (Src-associated in mitosis, 68 kDa) emerged as the human cDNA that, when fused to a transcriptional activation domain, gave the strongest 3D interaction signal with a LexA-3D hybrid protein. 3D polymerase and Sam68 coimmunoprecipitated from infected human cell lysates with antibodies that recognized either protein. Upon poliovirus infection, Sam68 relocalized from the nucleus to the cytoplasm, where poliovirus replication occurs. Sam68 was isolated from infected cell lysates with an antibody that recognizes poliovirus protein 2C, suggesting that it is found on poliovirus-induced membranes upon which viral RNA synthesis occurs. These data, in combination with the known RNA- and protein-binding properties of Sam68, make Sam68 a strong candidate for a host protein with a functional role in poliovirus replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report demonstrates that the investigational prostatic carcinoma marker known as the prostate-specific membrane antigen (PSM) possesses hydrolytic activity with the substrate and pharmacologic properties of the N-acetylated alpha-linked acidic dipeptidase (NAALADase). NAALADase is a membrane hydrolase that has been characterized in the mammalian nervous system on the basis of its catabolism of the neuropeptide N-acetylaspartylglutamate (NAAG) to yield glutamate and N-acetylaspartate and that has been hypothesized to influence glutamatergic signaling processes. The immunoscreening of a rat brain cDNA expression library with anti-NAALADase antisera identified a 1428-base partial cDNA that shares 86% sequence identity with 1428 bases of the human PSM cDNA [Israeli, R. S., Powell, C. T., Fair, W. R. & Heston, W.D.W. (1993) Cancer Res. 53, 227-230]. A cDNA containing the entire PSM open reading frame was subsequently isolated by reverse transcription-PCR from the PSM-positive prostate carcinoma cell line LNCaP. Transient transfection of this cDNA into two NAALADase-negative cell lines conferred NAAG-hydrolyzing activity that was inhibited by the NAALADase inhibitors quisqualic acid and beta-NAAG. Thus we demonstrate a PSM-encoded function and identify a NAALADase-encoding cDNA. Northern analyses identify at least six transcripts that are variably expressed in NAALADase-positive but not in NAALADase-negative rat tissues and human cell lines; therefore, PSM and/or related molecular species appear to account for NAAG hydrolysis in the nervous system. These results also raise questions about the role of PSM in both normal and pathologic prostate epithelial-cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the in vivo efficacy of a systemic gene transfer method, which combines a liposomal delivery system (DLS liposomes) with episomally replicative DNA plasmids to effect long-term expression of a transgene in cells. A single i.v. injection of a plasmid DNA vector containing the luciferase gene as a marker was administered with the DLS liposomes in BALB/c mice. The luciferase gene and its product were found in all mouse tissues tested as determined by PCR analysis and immunohistochemistry. Luciferase activity was also detected in all tissues tested and was present in lung, liver, spleen, and heart up to 3 months postinjection. In contrast to the nonepisomal vectors tested (pRSV-luc and pCMVintlux), human papovavirus (BKV)-derived episomal vectors showed long-term transgene expression. We found that these episomal vectors replicated extrachromosomally in lung 2 weeks postinjection. Results indicated that transgene expression in specific tissues depended on the promoter element used, DNA/liposome formulation, dose of DNA per injection, and route of administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of the lipid A portion of bacterial lipopolysaccharide (LPS) to leukocyte CD14 activates phagocytes and initiates the septic shock syndrome. Two lipid A analogs, lipid IVA and Rhodobacter sphaeroides lipid A (RSLA), have been described as LPS-receptor antagonists when tested with human phagocytes. In contrast, lipid IVA activated murine phagocytes, whereas RSLA was an LPS antagonist. Thus, these compounds displayed a species-specific pharmacology. To determine whether the species specificity of these LPS antagonists occurred as a result of interactions with CD14, the effects of lipid IVA and RSLA were examined by using human, mouse, and hamster cell lines transfected with murine or human CD14 cDNA expression vectors. These transfectants displayed sensitivities to lipid IVA and RSLA that reflected the sensitivities of macrophages of similar genotype (species) and were independent of the source of CD14 cDNA. For example, hamster macrophages and hamster fibroblasts transfected with either mouse or human-derived CD14 cDNA responded to lipid IVA and RSLA as LPS mimetics. Similarly, lipid IVA and RSLA acted as LPS antagonists in human phagocytes and human fibrosarcoma cells transfected with either mouse or human-derived CD14 cDNA. Therefore, the target of these LPS antagonists, which is encoded in the genomes of these cells, is distinct from CD14. Although the expression of CD14 is required for macrophage-like sensitivity to LPS, CD14 cannot discriminate between the lipid A moieties of these agents. We hypothesize that the target of the LPS antagonists is a lipid A recognition protein which functions as a signaling receptor that is triggered after interaction with CD14-bound LPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms regulating expression of mouse mammary tumor virus (MMTV)-encoded superantigens from the viral sag gene are largely unknown, due to problems with detection and quantification of these low-abundance proteins. To study the expression and regulation of the MMTV sag gene, we have developed a sensitive and quantitative reporter gene assay based on a recombinant superantigen-human placental alkaline phosphatase fusion protein. High sag-reporter expression in Ba/F3, an early B-lymphoid cell line, depends on enhancers in either of the viral long terminal repeats (LTRs) and is largely independent of promoters in the 5' LTR. The same enhancer region is also required for general expression of MMTV genes from the 5' LTR. The enhancer was mapped to a 548-bp fragment of the MMTV LTR lying within sag and shown to be sufficient to stimulate expression from a heterologous simian virus 40 promoter. No enhancer activity of the MMTV LTR was observed in XC sarcoma cells, which are permissive for MMTV. Our results demonstrate a major role for this enhancer in MMTV gene expression in early B-lymphoid cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies in transgenic mice and cultured cells have indicated that the major enhancer function for erythroid cell expression of the globin genes is provided by the heterodimeric basic-leucine zipper transcription factor NF-E2. Globin gene expression within cultured mouse erythroleukemia cells is highly dependent on NF-E2. To examine the requirement for this factor in vivo, we used homologous recombination in embryonic stem cells to generate mice lacking the hematopoietic-specific subunit, p45 NF-E2. The most dramatic aspect of the homozygous mutant mice was an absence of circulating platelets, which led to the death of most animals due to hemorrhage. In contrast, the effect of loss of NF-E2 on the erythroid lineage was surprisingly mild. Although neonates exhibited severe anemia and dysmorphic red-cell changes, probably compounded by concomitant bleeding, surviving adults exhibited only mild changes consistent with a small decrease in the hemoglobin content per cell. p45 NF-E2-null mice responded to anemia with compensatory reticulocytosis and splenomegaly. Globin chain synthesis was balanced, and switching from fetal to adult globins progressed normally. Although these findings are consistent with the substitution of NF-E2 function in vivo by one or more compensating proteins, gel shift assays using nuclear extracts from p45 NF-E2-null mice failed to reveal novel complexes formed on an NF-E2 binding site. Thus, regulation of globin gene transcription through NF-E2 binding sites in vivo is more complex than has been previously appreciated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infectious vesicular stomatitis virus (VSV), the prototypic nonsegmented negative-strand RNA virus, was recovered from a full-length cDNA clone of the viral genome. Bacteriophage T7 RNA polymerase expressed from a recombinant vaccinia virus was used to drive the synthesis of a genome-length positive-sense transcript of VSV from a cDNA clone in baby hamster kidney cells that were simultaneously expressing the VSV nucleocapsid protein, phosphoprotein, and polymerase from separate plasmids. Up to 10(5) infectious virus particles were obtained from transfection of 10(6) cells, as determined by plaque assays. This virus was amplified on passage, neutralized by VSV-specific antiserum, and shown to possess specific nucleotide sequence markers characteristic of the cDNA. This achievement renders the biology of VSV fully accessible to genetic manipulation of the viral genome. In contrast to the success with positive-sense RNA, attempts to recover infectious virus from negative-sense T7 transcripts were uniformly unsuccessful, because T7 RNA polymerase terminated transcription at or near the VSV intergenic junctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug-resistance-associated protein (MRP) is a plasma membrane glycoprotein that can confer multidrug resistance (MDR) by lowering intracellular drug concentration. Here we demonstrate that depletion of intracellular glutathione by DL-buthionine (S,R)-sulfoximine results in a complete reversal of resistance to doxorubicin, daunorubicin, vincristine, and VP-16 in lung carcinoma cells transfected with a MRP cDNA expression vector. Glutathione depletion had less effect on MDR in cells transfected with MDR1 cDNA encoding P-glycoprotein and did not increase the passive uptake of daunorubicin by cells, indicating that the decrease of MRP-mediated MDR was not due to nonspecific membrane damage. Glutathione depletion resulted in a decreased efflux of daunorubicin from MRP-transfected cells, but not from MDR1-transfected cells, suggesting that glutathione is specifically required for the export of drugs from cells by MRP. We also show that MRP increases the export of glutathione from the cell and this increased export is further elevated in the presence of arsenite. Our results support the hypothesis that MRP functions as a glutathione S-conjugate carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The WW domain has previously been described as a motif of 38 semiconserved residues found in seemingly unrelated proteins, such as dystrophin, Yes-associated protein (YAP), and two transcriptional regulators, Rsp-5 and FE65. The molecular function of the WW domain has been unknown until this time. Using a functional screen of a cDNA expression library, we have identified two putative ligands of the WW domain of YAP, which we named WBP-1 and WBP-2. Peptide sequence comparison between the two partial clones revealed a homologous region consisting of a proline-rich domain followed by a tyrosine residue (with the shared sequence PPPPY), which we shall call the PY motif. Binding assays and site-specific mutagenesis have shown that the PY motif binds with relatively high affinity and specificity to the WW domain of YAP, with the preliminary consensus XPPXY being critical for binding. Herein, we have implicated the WW domain with a role in mediating protein-protein interactions, as a variant of the paradigm set by Src homology 3 domains and their proline-rich ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of muscarinic m1 or m3 receptors can, by generating diacylglycerol and activating protein kinase C, accelerate the breakdown of the amyloid precursor protein (APP) to form soluble, nonamyloidogenic derivatives (APPs), as previously shown. This relationship has been demonstrated in human glioma and neuroblastoma cells, as well as in transfected human embryonic kidney 293 cells and PC-12 cells. We now provide evidence that stimulation of metabotropic glutamate receptors (mGluRs), which also are coupled to phosphatidylinositol 4,5-bisphosphate hydrolysis, similarly accelerates processing of APP into nonamyloidogenic APPs. This process is demonstrated both in hippocampal neurons derived from fetal rats and in human embryonic kidney 293 cells transfected with cDNA expression constructs encoding the mGluR 1 alpha subtype. In hippocampal neurons, both an mGluR antagonist, L-(+)-2-amino-3-phosphonopropionic acid, and an inhibitor of protein kinase C, GF 109203X, blocked the APPs release evoked by glutamate receptor stimulation. Ionotropic glutamate agonists, N-methyl-D-aspartate or S(-)-5-fluorowillardiine, failed to affect APPs release. These data show that selective mGluR agonists that initiate signal-transduction events can regulate APP processing in bona fide primary neurons and transfected cells. As glutamatergic neurons in the cortex and hippocampus are damaged in Alzheimer disease, amyloid production in these regions may be enhanced by deficits in glutamatergic neurotransmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of genes in eukaryotes has commonly been analyzed in a whole tissue, and levels of expression have been interpreted as the result of equivalent rates of transcription in every cell. We have produced transgenic mouse lines that express beta-galactosidase under the control of globin promoters linked to the major tissue-specific regulatory element of the alpha-globin locus, which permits the analysis of transgene expression in individual red blood cells. We find that expression of the transgene within all mouse lines is heterocellular. Individual cells either do not express the transgene at all or express it at a level characteristic of that line. The number of beta-galactosidase-expressing cells varies greatly between different lines of transgenic mice at any defined stage of development, but within a transgenic line, individual mice have strikingly similar numbers of expressing cells. This suggests that the degree of heterocellular expression is determined by the site of integration, as is seen in position-effect variegation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana (Nrv), has been purified on the basis of reactivity of its carbohydrate epitope(s) with anti-horseradish peroxidase (HRP) antibodies that are specific markers for Drosophila neurons. Anti-Nrv monoclonal antibodies (mAbs), specific for the protein moiety of Nrv, were used to screen a Drosophila embryo cDNA expression library. Three cDNA clones (designated Nrv1, Nrv2.1, and Nrv2.2) were isolated that code for proteins recognized by anti-Nrv mAbs on Western blots. DNA sequencing and Southern blot analyses established that the cDNA clones are derived from two different genes. In situ hybridization to Drosophila polytene chromosomes showed that the cDNA clones map to the third chromosome near 92C-D. Nrv1 and Nrv2.1/2.2 have open reading frames of 309 and 322/323 amino acids, respectively, and they are 43.4% identical at the amino acid level. The proteins deduced from these clones exhibit significant homology in both primary sequence and predicted topology to the beta subunit of Na+,K(+)-ATPase. Immunoaffinity-purified Nrv is associated with a protein (M(r) 100,000) recognized on Western blots by anti-ATPase alpha-subunit mAb. Our results suggest that the Drosophila nervous system-specific antigens Nrv1 and -2 are neuronal forms of the beta subunit of Na+,K(+)-ATPase.