992 resultados para ajoite, kinoite, stringhamite, cupric ions, healing mineral, vibrational spectroscopy
Resumo:
The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.
Resumo:
Objectives: To analyze the effects of low-level laser therapy (LLLT), 670 nm, with doses of 4 and 7 J/cm(2), on the repair of surgical wounds covered by occlusive dressings. Background Data: The effect of LLLT on the healing process of covered wounds is not well defined. Materials and Methods: For the histologic analysis with HE staining, 50 male Wistar rats were submitted to surgical incisions and divided into 10 groups (n=5): control; stimulated with 4 and 7 J/cm(2) daily, for 7 and 14 days, with or without occlusion. Reepithelization and the number of leukocytes, fibroblasts, and fibrocytes were obtained with an image processor. For the biomechanical analysis, 25 rats were submitted to a surgical incision and divided into five groups (n=5): treated for 14 days with and without occlusive dressing, and the sham group. Samples of the lesions were collected and submitted to the tensile test. One-way analysis of variance was performed, followed by post hoc analysis. A Tukey test was used on the biomechanical data, and the Tamhane test on the histologic data. A significance level of 5% was chosen (p <= 0.05). Results: The 4 and 7J/cm(2) laser with and without occlusive dressing did not alter significantly the reepithelization rate of the wounds. The 7 J/cm(2) laser reduced the number of leukocytes significantly. The number of fibroblasts was higher in the groups treated with laser for 7 days, and was significant in the covered 4 J/cm(2) laser group. Conclusions: Greater interference of the laser-treatment procedure was noted with 7 days of stimulation, and the occlusive dressing did not alter its biostimulatory effects.
Resumo:
Objective: We tested the hypothesis that LED phototherapy with combined 660-nm and 890-nm light will promote healing of venous ulcers that failed to respond to other forms of treatment. Background Data: A variety of dressings, growth factors, and adjunct therapies are used to treat venous ulcers, but none seems to yield satisfactory results. Materials and Methods: We used a randomized placebo-controlled double-blind study to compare a total of 20 patients divided with 32 chronic ulcers into three groups. In group 1 the ulcers were cleaned, dressed with 1% silver sulfadiazine (SDZ) cream, and treated with placebo phototherapy (<.03 J/cm(-3)) using a Dynatron Solaris 705 phototherapy research device. In group 2 the ulcers were treated similarly but received real phototherapy (3 J/cm(-2)) instead of placebo. In group 3 (controls), the ulcers were simply cleaned and dressed with SDZ without phototherapy. The ulcers were evaluated with digital photography and computer image analysis over 90 d or until full healing was attained. Results: Ulcers treated with phototherapy healed significantly faster than controls when compared at day 30 (p < 0.01), day 60 (p < 0.05), and day 90 (p < 0.001), and similarly healed faster than the placebo-treated ulcers at days 30 and 90 (p < 0.01), but not at day 60. The beneficial effect of phototherapy was more pronounced when the confounding effect of small-sized ulcers was removed from the analysis. Medium- and large-sized ulcers healed significantly faster with treatment (>= 40% rate of healing per month) than placebo or control ulcers (p < 0.05). Conclusion: Phototherapy promotes healing of chronic venous ulcers, particularly large recalcitrant ulcers that do not respond to conventional treatment.
Resumo:
Objective: We sought to investigate the wound-healing process after photodynamic therapy (PDT) mediated by methylene blue dye (MB). Background Data: Few scientific studies show the PDT roles in wound healing. Materials and Methods: One hundred rats were given a circular wound on the back, inflicted with a 6-mm-diameter punch. The animals were divided into four groups: control (no treatment); dye (topical application of MB); laser (InGaAlP, 117.85 J/cm(2), 100 mW, 660 nm, single point); and PDT (topical application of MB followed by laser irradiation). After 1, 3, 5, 7, and 14 days, the cutaneous wounds were photographed and assessed with histopathologic examination by using light microscope. Changes seen in edema, necrosis, inflammation, granulation tissue, re-epithelialization, and number of young fibroblasts were semiquantitatively evaluated. The wound-area changes were measured with special software and submitted to statistical analysis. Results: The laser group demonstrated the smallest wound area at 14 days after the surgical procedure (p<0.01). Concerning complete re-epithelialization, the laser group showed it at 5-7 days after surgery, whereas the PDT and the other groups showed it at 14 days. Conclusions: Laser interaction with tissue is somehow changed when exposed to the MB. PDT mediated by MB was not prejudicial to wound healing, as no delay occurred compared with the control group.
Resumo:
Objectives: This study evaluates the action of a low-intensity diode laser with gallium-aluminum-arsenide (GaAlAs) active medium on the healing process and analgesia in individuals undergoing free gingival grafts. Material and Method: Ten individuals needing bilateral gingival graft in the mandibular arch were enrolled in a double-blind study. Each individual had a 30-d interval between the two surgeries. The side receiving application of laser was defined as test side and was established upon surgery; laser application was simulated on the control side. The laser was applied in the immediate postoperative period and after 48 h, and patients rated pain on a scale of 0 to 10, representing minimal and maximal pain, respectively. Photographs were obtained at 7, 15, 30, and 60d postoperatively and evaluated by five periodontists. Results: No statistically significant difference was found at any postoperative period between control and test sides, even though greater clinical improvement associated with treatment was observed at 15d postoperative. At 30 and 60d, some examiners observed the same or greater clinical improvement for the control. Only one individual reported mild to moderate pain on the first postoperative day. Conclusions: Low-intensity laser therapy did not improve the healing of gingival grafts and did not influence analgesia.
Resumo:
Propolis is a chemically complex resinous bee product which has gained worldwide popularity as a means to improve health condition and prevent diseases. The main constituents of an aqueous extract of a sample of green propolis from Southeast Brazil were shown by high performance liquid chromatography/mass spectroscopy/mass spectroscopy to be mono- and di-O-caffeoylquinic acids; phenylpropanoids known as important constituents of alcohol extracts of green propolis, such as artepillin C and drupanin were also detected in low amounts in the aqueous extract. The anti-inflammatory activity of this extract was evaluated by determination of wound healing parameters. Female Swiss mice were implanted subcutaneously with polyesther-polyurethane sponge discs to induce wound healing responses, and administered orally with green propolis (500mg kg(-1)). At 4, 7 and 14 days post-implantation, the fibrovascular stroma and deposition of extracellular matrix were evaluated by histopathologic and morphometric analyses. In the propolis-treated group at Days 4 and 7 the inflammatory process in the sponge was reduced in comparison with control. A progressive increase in cell influx and collagen deposition was observed in control and propolis-treated groups during the whole period. However, these effects were attenuated in the propolis-treated group at Days 4 and 7, indicating that key factors of the wound healing process are modulated by propolis constituents.
Resumo:
The mechanisms for multimode vibrational couplings in resonant positron annihilation are not well understood. We show that these resonances can arise from positron-induced distortions of the potential energy surface (target response to the positron field). Though these distortions can transfer energy into single- and multiquantum vibrations, they have so far been disregarded as a pathway to resonant annihilation. We also compare the existing annihilation theories and show that the currently accepted model can be cast as a special case of the Feshbach annihilation theory.
Hyperpolarizabilities of the methanol molecule: A CCSD calculation including vibrational corrections
Resumo:
In this work we present the results for hyperpolarizabilities of the methanol molecule including vibrational corrections and electron correlation effects at the CCSD level. Comparisons to random phase approximation results previously reported show that the electron correlation is in general important for both electronic contribution and vibrational corrections. The role played by the anharmonicities on the calculations of the vibrational corrections has also been analyzed and the obtained results indicate that the anharmonic terms are important for the dc-Pockels and dc-Kerr effects. For the other nonlinear optical properties studied the double-harmonic approximation is found to be suitable. Comparison to available experimental result in gas phase for the dc-second harmonic generation second hyperpolarizability shows a very good agreement with the electronic contribution calculated here while our total value is 14% larger than the experimental value.
Resumo:
A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN (R) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing degradation products were detected with the RGA. In the IR spectra nearly all bands decrease due to the degradation of the molecular structure. In the region from 3000 to 2700 cm(-1) vibration bands of saturated hydrocarbons not reported in literature so far became visible. The outgassing experiments show a mixture of C(2)H(4), CO, and N(2) as the main outgassing components of polyimide. The ability to combine both analytical methods and the opportunity to measure a whole fluence series within a single experiment show the efficiency of the new setup. (C) 2011 American Institute of Physics. [doi:10.1063/1.3571301]
Resumo:
The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]
Resumo:
Ti K-edge x-ray absorption near-edge spectroscopy (XANES) and Raman scattering were used to study the solid solution effects on the structural and vibrational properties of Pb(1-x)Ba(x)Zr(0.65)Ti(0.35)O(3) with 0.0 < x < 0.40. Compared with x-ray diffraction techniques, which indicates that the average crystal symmetry changes with the substitution of Pb by Ba ions or with temperature variations for samples with x=0.00, 0.10, and 0.20, local structural probes such as XANES and Raman scattering results demonstrate that at local level, the symmetry changes are much less prominent. Theoretical XANES spectra calculation corroborate with the interpretation of the XANES experimental data.
Resumo:
In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]
Resumo:
We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C(60)(OH)(n)] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke's three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C(60)(OH)(36). Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1, 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C(60)(OH)(24) isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4, 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.
Resumo:
In the present research, we studied wines from three different south Brazilian winemaking regions with the purpose of differentiating them by geographical origin of the grapes. Brazil`s wide territory and climate diversity allow grape cultivation and winemaking in many regions of different and unique characteristics. The wine grape cultivation for winemaking concentrates in the South Region, mainly in the Serra GaA(0)cha, the mountain area of the state of Rio Grande do Sul, which is responsible for 90% of the domestic wine production. However, in recent years, two new production regions have developed: the Campanha, the plains to the south and the Serra do Sudeste, the hills to the southeast of the state. Analysis of isotopic ratios of (18)O/(16)O of wine water, (13)C/(12)C of ethanol, and of minerals were used to characterize wines from different regions. The isotope analysis of delta(18)O of wine water and minerals Mg and Rb were the most efficient to differentiate the regions. By using isotope and mineral analysis, and discrimination analysis, it was possible to classify the wines from south Brazil.
Resumo:
Upland rice plants, cultivar `IAC 202,` were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo - Ni, AN - Mo + Ni, UR + Mo + Ni, UR + Mo - Ni, and UR - Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry-matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 --N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR-grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 --N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate-grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.