951 resultados para air-liquid interface


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that, at high densities, fully variational solutions of solidlike types can be obtained from a density functional formalism originally designed for liquid 4He . Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased density functional (DF) methods to study highly nonhomogeneous systems, like 4He interacting with strongly attractive impurities and/or substrates, or the nucleation of the solid phase in the metastable liquid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rat ileal air interface and submerged explant models were developed and used to compare the adhesion of Salmonella enterica var Enteritidis wild-type strains with that of their isogenic single and multiple deletion mutants. The modified strains studied were defective for fimbriae, flagella, motility or chemotaxis and binding was assessed on tissues with and without an intact mucus layer. A multiple afimbriate/aflagellate (fim(-)/fla(-)) strain, a fimbriate but aflagellate (fla(-)) strain and a fimbriate/flagellate but non-motile (mot(-)) strain bound significantly less extensively to the explants than the corresponding wild-type strains. With the submerged explant model this difference was evident in tissues with or without a mucus layer, whereas in the air interface model it was observed only in tissues,vith an intact mucus layer. A smooth swimming chemotaxis-defective (che(-)) strain and single or multiple afimbriate strains bound to explants as well as their corresponding wild-type strain. This suggests that under the present experimental conditions fimbriae were not essential for attachment of S. enterica var Enteritidis to rat ileal explants, However; the possession of active flagella did appear to be an important factor. in enabling salmonellae to penetrate the gastrointestinal mucus layer and attach specifically to epithelial cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface, by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semi-analytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a shallow flat bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple and sensitive method using solid phase microextraction (SPME) and liquid chromatography (LC) with heated online desorption (SPME-LC) was developed and validated to analyze anticonvulsants (AEDs) in human plasma samples. A heated lab-made interface chamber was used in the desorption procedure, which allowed the transference of the whole extracted sample. The SPME conditions were optimized by applying an experimental design. Important factors are discussed such as fiber coating types, pH, extraction time and desorption conditions. The drugs were analyzed by LC, using a C18 column (150 mm 4.6 mm 5 mm); and 50 mmol L1 , pH ¼ 5.50 ammonium acetate buffer : acetonitrile : methanol (55 : 22 : 23 v/v) as the mobile phase with a flow rate of 0.8 mL min1 . The suggested method presented precision (intra-assay and inter-assay), linearity and limit of quantification (LOQ) all adequate for the therapeutic drug monitoring (TDM) of AEDs in plasma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple and sensitive method using solid phase microextraction (SPME) and liquid chromatography (LC) with heated online desorption (SPME-LC) was developed and validated to analyze anticonvulsants (AEDs) in human plasma samples. A heated lab-made interface chamber was used in the desorption procedure, which allowed the transference of the whole extracted sample. The SPME conditions were optimized by applying an experimental design. Important factors are discussed such as fiber coating types, pH, extraction time and desorption conditions. The drugs were analyzed by LC, using a C18 column (150 mm x 4.6 mm x 5 mm); and 50 mmol L-1, pH 5.50 ammonium acetate buffer : acetonitrile : methanol (55 : 22 : 23 v/v) as the mobile phase with a flow rate of 0.8 mL min(-1). The suggested method presented precision (intra-assay and inter-assay), linearity and limit of quantification (LOQ) all adequate for the therapeutic drug monitoring (TDM) of AEDs in plasma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Liquid crystals (LCs) are an interesting class of soft condensed matter systems characterized by an unusual combination of fluidity and long-range order, mainly known for their applications in displays (LCDs). However, the interest in LC continues to grow pushed by their application in new technologies in medicine, optical imaging, micro and nano technologies etc. In LCDs uniaxial alignment of LCs is mainly achieved by a rubbing process. During this treatment, the surfaces of polymer coated display substrates are rubbed in one direction by a rotating cylinder covered with a rubbing cloth. Basically, LC alignment involves two possible aligning directions: uniaxial planar (homogeneous) and vertical (homeotropic) to the display substrate. An interesting unresolved question concerning LCs regards the origin of their alignment on rubbed surfaces, and in particular on the polymeric ones used in the display industry. Most studies have shown that LCs on the surface of the rubbed polymer film layer are lying parallel to the rubbing direction. In these systems, micrometric grooves are generated on the film surface along the rubbing direction and also the polymer chains are stretched in this direction. Both the parallel aligned microgrooves and the polymer chains at the film surface may play a role in the LC alignment and it is not easy to quantify the effect of each contribution. The work described in this thesis is an attempt to find new microscopic evidences on the origin of LC alignment on polymeric surfaces through molecular dynamics (MD) simulations, which allow the investigation of the phenomenon with atomic detail. The importance of the arrangement of the polymeric chains in LCs alignment was studied by performing MD simulations of a thin film of a typical nematic LC, 4-cyano-4’-pentylbiphenyl (5CB), in contact with two different polymers: poly(methyl methacrylate)(PMMA) and polystyrene (PS). At least four factors are believed to influence the LC alignment: 1. the interactions of LCs with the backbone vinyl chains; 2. the interactions of LCs with the oriented side groups; 3. the anisotropic interactions of LCs with nanometric grooves; 4. the presence of static surface charges. Here we exclude the effect of microgrooves and of static surface charges from our virtual experiment, by using flat and neutral polymer surfaces, with the aim of isolating the chemical driving factors influencing the alignment of LC phases on polymeric surfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several issues concerning the current use of speech interfaces are discussed and the design and development of a speech interface that enables air traffic controllers to command and control their terminals by voice is presented. A special emphasis is made in the comparison between laboratory experiments and field experiments in which a set of ergonomics-related effects are detected that cannot be observed in the controlled laboratory experiments. The paper presents both objective and subjective performance obtained in field evaluation of the system with student controllers at an air traffic control (ATC) training facility. The system exhibits high word recognition test rates (0.4% error in Spanish and 1.5% in English) and low command error (6% error in Spanish and 10.6% error in English in the field tests). Subjective impression has also been positive, encouraging future development and integration phases in the Spanish ATC terminals designed by Aeropuertos Españoles y Navegación Aérea (AENA).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the optical behavior of a nonlinear interface is studied. The nonlinear medium has been a nematic liquid crystal, namely MBBA, and the nonlinear one, glasses of different types (F-10 and F-2) depending on the experimental needs. The anchoring forces at the boundary have been found to inhibit the action of the evanescent field in the case of total internal reflection. Most of observed nonlinearities are due to thermal effects. As a consequence, liquid crystals do not seem to be good candidates for total internal reflection optical bistability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the past years a great interest has been devoted to the study of possible applications of non-linear interfaces, mainly in the field of Optical Bistability. Several papers have been published in this field, and some of them dealing with liquid crystals as non-linear material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As has been shown in the literature, an interface between two dielectric materials, one of which has an intensity-dependent refractive index is capable of exhibing a wide range of complex and potentially useful optical phenomena.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As reported previously, an interface between linear and liquid crystal media shows some nonlinear properties that can be employed in the analysis of this type of optical bistable device.