939 resultados para adhesive cementation
Resumo:
Purpose: To evaluate the influence of the brush type as a earner of priming adhesive solutions and the use of paper points as a remover of the excess of these solutions on the push-out bond strength of resin cement to bovine root dentin. The null hypotheses were that brush type and the use of paper points do not affect the bond strength. Materials and Methods: The canals of 80 single-root bovine roots (16 mm in length) were prepared at 12 mm using the preparation drill (FRC Postec Plus, Ivoclar). Half of each root was embedded in acrylic resin and the specimens were divided into 8 groups, considering the factors brush type (4 levels) and paper point (2 levels) (n = 10): Gr 1: small microbrush (Cavi-Tip, SDI); Gr 2: Microbrush (Dentsply); Gr 3: Endobrush (Bisco); Gr 4: conventional brush (Bisco); Gr 5: Cavi-Tip (SDI) + paper points; Gr 6: Microbrush (Dentsply) + paper points; Gr 7: Endobrush (Bisco) + paper points; Gr 8: conventional brush (Bisco) + paper points. The root dentin was treated with a multistep total-etch adhesive system (All Bond 2). The adhesive system was applied using each microbrush, with and without using paper points. One fiber post was molded with addition silicon and 80 posts were made of resin cement (Duolink), The resin posts were luted (Duolink resin cement), and the specimens were stored for 24 h in water at 37°C. Each specimen was cut into 4 disk-shaped samples (1.8 mm in thickness), which were submitted to the push-out test. Results: The brush type (p < 0.0001) (small microbrush > microbrush = endobrush = conventional brush) and the use of paper points (p = 0.0001) (with > without) influenced the bond strength significantly (two-way ANOVA). The null hypotheses were rejected. Conclusion: The smallest brush (Cavi-Tip) and the use of paper points significantly improved the resin bond to bovine root dentin.
Resumo:
This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 μm SiOx + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.
Resumo:
PURPOSE: To investigate the penetration (tags) of adhesive materials into enamel etched with phosphoric acid or treated with a self-etching adhesive, before application of a pit-and-fissure sealant. MATERIALS AND METHODS: The sample comprised six study groups with six specimens each. Before pit-and-fissure sealing with the materials Clinpro SealantTM (Groups I and II), Vitro Seal ALPHA (Groups III and IV) and Fuji II LC (Groups V and VI), the teeth in Groups I, III, and V were etched with 35% phosphoric acid for 30 seconds. Teeth in Groups II, IV, and VI received application of the self-etching adhesive Adper Prompt L-Pop. The treated teeth were sectioned buccolingually, ground to 100-microm thickness, decalcified, and analyzed by conventional light microscopy at 400x magnification. RESULTS: The teeth etched with phosphoric acid exhibited significantly greater penetration than specimens treated with self-etching adhesive. CLINICAL SIGNIFICANCE: When compared with enamel treated with a self-etching adhesive, the penetration (tags) of adhesive materials into enamel was greater when applied on enamel etched with phosphoric acid.
Resumo:
Aim: Based on the hypothesis the application of a low-viscosity hydrophobic resin coating improves the bond of all-in-one adhesive, the purpose of the study was to evaluate the bond strength of four adhesive systems to bovine root dentin using the push-out test method. Methods and Materials: The root canals of 32 bovine roots (16 mm) were prepared to a length of 12 mm using a FRC Postec Plus preparation drill. The specimens were allocated into four groups according to the adhesive system used: (Group 1) All-in-one Xeno III; (Group 2) All-in-one Xeno III+ScotchBond Multi-Purpose Plus Adhesive; (Group 3) Simplified Etch & Rinse One Step Plus; and (Group 4) Multi-Bottle Etch & Rinse All-Bond 2. A fiber-reinforced composite retention post was reproduced using an additional silicon impression and fabricated with DuoLink resin cement. The root specimens were treated with the selected adhesive systems, and the resin posts were luted in the canals with DuoLink resin cement. Each root specimen was cross sectioned into four samples (±1.8 mm in thickness), and the post sections were pushed-out to determine the bond strength to dentin. Results: Group 2 (2.9±1.2) was statistically higher than Group 1 (1.1±0.5) and Group 3 (1.1±0.5). Groups 1 and 3 showed no statistically significant difference while Group 4 (2.0±0.7) presented similar values (p>0.05) to Groups 1, 2, and 3 [(one-way analysis of variance (ANOVA)] and Tukey test, α=0.05). Conclusion: The hypothesis was accepted since the application of the additional layer of a low-viscosity bonding resin improved the bond of the all-in-one adhesive. Further studies must be conducted to evaluate the long-term bond.
Resumo:
This study subjected two self-adhesive resin cements and two conventional resin cements to dry and aging conditions, to compare their microtensile bond strengths (MTBS) to dentin. Using four different luting systems (n = 10), 40 composite resin blocks (each 5x5x4 mm) were cemented to flat human crown dentin surfaces. The specimens were stored in water for 24 hours (37°C), at which point each specimen was sectioned along two axes to obtain beams that were divided randomly into two groups: dry samples, which were tested immediately, and samples that were subjected to accelerated aging conditions (12, 000 thermocycles followed by storage for 150 days). The μTBS results were affected significantly by the luting system used (P < 40001). Only the μTBS of Rely-X Unicem was reduced significantly after aging; the μTBS remained stable or increased for the other self-adhesive resin cement and the two conventional cements.
Resumo:
The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm 2, respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey's test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements. © 2009 Pleiades Publishing, Ltd.
Resumo:
The aim of this study was to evaluate the effect of desensitizing agents on the micro-shear bond strength of adhesive systems to dentin. Forty bovine teeth were divided into 8 groups (n=5): G1--Single Bond (SB); G2--GH.F + SB; G3-- Desensibilize + SB; G4--essensiv + SB; G5 --ingle Bond 2 (SB2); G6--H.E + SB2; G7--esensibilize + SB2; G8--Dessensiv + SB2. In all of the groups, the desensitizing agents were applied after phosphoric acid etching and before the dentin adhesive application. Z250 composite resin tubes were bonded on the treated surface. After 24 hours, the teeth were tested in a universal machine. Data were submitted to ANOVA and Tukey's test (5%). The results showed that the groups where Desensibilize and Dessensiv were applied exhibited smaller bond strength values.
Resumo:
The presence of porosities at the dentin/adhesive interface has been observed with the use of new generation dentin bonding systems. These porosities tend to contradict the concept that etching and hybridization processes occur equally and simultaneously. Therefore, the aim of this study was to evaluate the micromechanical behavior of the hybrid layer (HL) with voids based on a self-etching adhesive system using 3-D finite element (FE) analysis. Three FE models (Mr) were built: Mr, dentin specimen (41x41x82 μm) with a regular and perfect (i.e. pore-free) HL based on a self-etching adhesive system, restored with composite resin; Mp, similar to M, but containing 25% (v/v) voids in the HL; Mpp, similar to Mr, but containing 50% (v/v) voids in the HL. A tensile load (0.03N) was applied on top of the composite resin. The stress field was obtained by using Ansys Workbench 10.0. The nodes of the base of the specimen were constrained in the x, y and z axes. The maximum principal stress (σmax) was obtained for all structures at the dentin/adhesive interface. The Mpp showed the highest peak of σmax in the HL (32.2 MPa), followed by Mp (30 MPa) and Mr (28.4 MPa). The stress concentration in the peritubular dentin was high in all models (120 MPa). All other structures positioned far from voids showed similar increase of stress. Voids incorporated into the HL raised the σmax in this region by 13.5%. This behavior might be responsible for lower bond strengths of self-etching and single-bottle adhesives, as reported in the literature.
Resumo:
The objective of this study was to measure the thickness of the hybrid layer (HLT), length of resin tags (RTL) and bond strength (BS) in the same teeth, using a self-etching adhesive system Adper Prompt L Pop to intact dentin and to analyze the correlation between HLTand RTL and their BS. Ten human molars were used for the restorative procedures and each restored tooth was sectioned in mesio-distal direction. One section was submitted to light microscopy analysis of HLT and RTL (400x). Another section was prepared and submitted to the microtensile bond test (0.5 mm/min). The fractured surfaces were analyzed using scanning electron microscopy to determine the failure pattern. Correlation between HLT and RTL with the BS data was analyzed by linear regression. The mean values of HLT, RTL and BS were 3.36 microm, 12.97 microm and 14.10 MPa, respectively. No significant relationship between BS and HLT (R2= 0.011, p>0.05) and between BS and RTL (R2= 0.038) was observed. The results suggested that there was no significant correlation between the HLT and RTL with the BS of the self-etching adhesive to dentin.
Resumo:
This experimental light microscopy study investigated the formation of a hybrid layer and resin tags on sound dentin, after utilization of conventional and self-etching adhesive systems. After restorative procedures, the specimens were decalcified in a formic acid and sodium citrate solution, embedded in paraffin, sectioned at 6-microm thickness and stained by the Brown & Brenn method for analysis and measurement by light microscopy (AXIOPHOT) (400x). The results were statistically analyzed by analysis of variance, at a significance level of 5%. Based on the results, it could be concluded that the conventional adhesive allowed the formation of a thicker hybrid layer than the self-etching adhesive, with similar penetration into the dentinal tubules (resin tags).
Resumo:
The aim of the present study was to evaluate the effect of thermocycling (TC) on the microtensile bond strength (microTBS) of two luting agents to feldspathic ceramic and to measure their film thickness (FT). For the microTBS test, sixteen blocks (6.4 x 6.4 x 4.8 mm) were fabricated using a feldspathic ceramic, etched with 10% hydrofluoric acid, rinsed and treated with the silane agent. The ceramic blocks were divided into two groups (n= 8): Gr1: dual-cured resin cement and Gr2: flowable resin. The luting agents were applied on the treated surfaces. Microsticks (1 +/-0. 1mm2) were prepared and stored under two conditions: dry, specimens immediately submitted to the microTBS test, and TC (6,000 cycles; 5 degrees C-55 degrees C). The microTBS was evaluated using a universal testing machine (1 mm/min). The microTBS data (MPa) were submitted to two-way ANOVA and Tukey' test (5%). For the FT test (ISO 4049), 0.05 ml of each luting agent (n=8) was pressed between two Mylar-covered glass plates (150 N) for 180 seconds and light polymerized. FT was measured using a digital paquimeter (Model 727-2001). The data (mm) were submitted to one-way ANOVA. The luting cement did not influence the microTBS results (p= 0.4467). Higher microtensile bond values were found after TC (20.5 +/- 8.6 MPa) compared to the dry condition (13.9 +/- 4. 7MPa), for both luting agents. The luting agents presented similar film thicknesses: Gr1- 0.052 +/- 0.016 mm; Gr2-0.041 +/- 0.003 mm. The luting agents presented similar film thickness and microTBS values, in dry and TC conditions and TC increased the bond strength regardless of the luting agent.
Resumo:
AIM: This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). METHODS: Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. RESULTS: The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). CONCLUSION: QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.
Resumo:
This study evaluated the influence of surface treatment on the shear bond strength of a composite resin (CR), previously submitted to the application of a temporary cement (TC), to an adhesive luting cement. Eight-four CR cylinders (5 mm diameter and 3 mm high) were fabricated and embedded in acrylic resin. The sets were divided into 6 groups (G1 to G6) (n=12). Groups 2 to 6 received a coat of TC. After 24 h, TC was removed and the CR surfaces received the following treatments: G2: ethanol; G3: rotary brush and pumice; G4: air-abrasion; G5: air-abrasion and adhesive system; G6: air-abrasion, acid etching and adhesive system. G1 (control) did not receive TC or any surface treatment. The sets were adapted to a matrix and received an increment of an adhesive luting cement. The specimens were subjected to the shear bond strength test. ANOVA and Tukey's tests showed that G3 (8.53 MPa) and G4 (8.63 MPa) differed significantly (p=0.001) from G1 (13.34 MPa). The highest mean shear bond strength values were found in G5 (14.78 MPa) and G6 (15.86 MPa). Air-abrasion of CR surface associated with an adhesive system provided an effective bond of the CR to the adhesive luting cement, regardless the pre-treatment with the phosphoric acid.
Resumo:
The aim of this study was to evaluate by micro-shear bond strength test, the bond strength of composite resin restoration to enamel submitted to whitening dentifrices. Forty bovine teeth were embedded in polystyrene resin and polished. The specimens were randomly divided into eight groups (n=5), according to the dentifrice (carbamide peroxide, hydrogen peroxide and conventional dentifrice) and the adhesive system (Prime & Bond 2.1 and Adper Single Bond 2). Dentifrice was applied for 15 minutes a day, for 21 days. Thirty minutes after the last exposure to dentifrice, the samples were submitted to a bonding procedure with the respective adhesive system. After that, four buttons of resin were bonded in each sample using transparent cylindrical molds. After 24 hours, the teeth were submitted to the micro-shear bond strength test and subsequent analysis of the fracture mode. Data were submitted to analysis of variance and Fisher's PLSD test (alpha = 0.05). The micro-shear bond strength showed no difference between adhesives systems but a significant reduction was found between the control and carbamide groups (p = 0.0145) and the control and hydrogen groups (p = 0.0370). The evaluation of the failures modes showed that adhesive failures were predominant. Cohesive failures were predominant in group IV The use of dentifrice with peroxides can decrease bonding strength in enamel.