927 resultados para adaptive systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The systems used for the procurement of buildings are organizational systems. They involve people in a series of strategic decisions, and a pattern of roles, responsibilities and relationships that combine to form the organizational structure of the project. To ensure effectiveness of the building team, this organizational structure needs to be contingent upon the environment within which the construction project takes place. In addition, a changing environment means that the organizational structure within a project needs to be responsive, and dynamic. These needs are often not satisfied in the construction industry, due to the lack of analytical tools with which to analyse the environment and to design appropriate temporary organizations. This paper presents two techniques. First is the technique of "Environmental Complexity Analysis", which identifies the key variables in the environment of the construction project. These are classified as Financial, Legal, Technological, Aesthetic and Policy. It is proposed that their identification will set the parameters within which the project has to be managed. This provides a basis for the project managers to define the relevant set of decision points that will be required for the project. The Environmental Complexity Analysis also identifies the project's requirements for control systems concerning Budget, Contractual, Functional, Quality and Time control. The process of environmental scanning needs to be done at regular points during the procurement process to ensure that the organizational structure is adaptive to the changing environment. The second technique introduced is the technique of "3R analysis", being a graphical technique for describing and modelling Roles, Responsibilities and Relationships. A list of steps is introduced that explains the procedure recommended for setting up a flexible organizational structure that is responsive to the environment of the project. This is by contrast with the current trend towards predetermined procurement paths that may not always be in the best interests of the client.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we examine the case of a system that cooperates with a “direct” user to plan an activity that some “indirect” user, not interacting with the system, should perform. The specific application we consider is the prescription of drugs. In this case, the direct user is the prescriber and the indirect user is the person who is responsible for performing the therapy. Relevant characteristics of the two users are represented in two user models. Explanation strategies are represented in planning operators whose preconditions encode the cognitive state of the indirect user; this allows tailoring the message to the indirect user's characteristics. Expansion of optional subgoals and selection among candidate operators is made by applying decision criteria represented as metarules, that negotiate between direct and indirect users' views also taking into account the context where explanation is provided. After the message has been generated, the direct user may ask to add or remove some items, or change the message style. The system defends the indirect user's needs as far as possible by mentioning the rationale behind the generated message. If needed, the plan is repaired and the direct user model is revised accordingly, so that the system learns progressively to generate messages suited to the preferences of people with whom it interacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New conceptual ideas on network architectures have been proposed in the recent past. Current store-andforward routers are replaced by active intermediate systems, which are able to perform computations on transient packets, in a way that results very helpful for developing and deploying new protocols in a short time. This paper introduces a new routing algorithm, based on a congestion metric, and inspired by the behavior of ants in nature. The use of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized algorithm capable of adapting quickly to changing conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple Adaptive Momentum [1] was introduced as a simple means of speeding the training of multi-layer perceptrons (MLPs) by changing the momentum term depending on the angle between the current and previous changes in the weights of the MLP. In the original paper. the weight changes of the whole network are used in determining this angle. This paper considers adapting the momentum term using certain subsets of these weights. This idea was inspired by the author's object oriented approach to programming MLPs. successfully used in teaching students: this approach is also described. It is concluded that the angle is best determined using the weight changes in each layer separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very large scale scheduling and planning tasks cannot be effectively addressed by fully automated schedule optimisation systems, since many key factors which govern 'fitness' in such cases are unformalisable. This raises the question of an interactive (or collaborative) approach, where fitness is assigned by the expert user. Though well-researched in the domains of interactively evolved art and music, this method is as yet rarely used in logistics. This paper concerns a difficulty shared by all interactive evolutionary systems (IESs), but especially those used for logistics or design problems. The difficulty is that objective evaluation of IESs is severely hampered by the need for expert humans in the loop. This makes it effectively impossible to, for example, determine with statistical confidence any ranking among a decent number of configurations for the parameters and strategy choices. We make headway into this difficulty with an Automated Tester (AT) for such systems. The AT replaces the human in experiments, and has parameters controlling its decision-making accuracy (modelling human error) and a built-in notion of a target solution which may typically be at odds with the solution which is optimal in terms of formalisable fitness. Using the AT, plausible evaluations of alternative designs for the IES can be done, allowing for (and examining the effects of) different levels of user error. We describe such an AT for evaluating an IES for very large scale planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter proposes the subspace-based blind adaptive channel estimation algorithm for dual-rate quasi-synchronous DS/CDMA systems, which can operate at the low-rate (LR) or high-rate (HR) mode. Simulation results show that the proposed blind adaptive algorithm at the LR mode has a better performance than that at the HR mode, with the cost of an increasing computational complexity.