988 resultados para Zero voltage switching commutation cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copyright © 2015 John Wiley & Sons, Ltd. Funded by College of Life Science and Medicine, University of Aberdeen, UK This work was funded by a start-up grant from the College of Life Science and Medicine, University of Aberdeen, UK. I am grateful to J. Bähler, E. Hartsuiker, F. Klein, J. Kohli, K. Nasmyth, M. C. Whitby, the Leibniz Institute – German Collection of Microorganisms and Cell Cultures (DMSZ) and the National BioResource Project Japan (NBRP) for providing materials used in this study. I thank Alistair J. P. Brown and Takashi Kubota for critically reading this manuscript.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgments This work was supported by Arthritis Research UK (Grant no. 19282). We are grateful to Dr. Nick Fluck for his invaluable support in recruiting patients for the study, and Mrs. Vivien Vaughan for her invaluable expertise in recruiting study participants and maintaining ethical documentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new open-winding control strategy is proposed for a brushless doubly-fed reluctance generator (BDFRG) applicable for wind turbines. The BDFRG control winding is fed via a dual two-level three-phase converter using a single dc bus. Direct power control based on maximum power point tracking with common mode voltage elimination is designed, which not only the active and reactive power is decoupled, but the reliability and redundancy are all improved greatly by increasing the switching modes of operation, while DC-link voltage and rating of power devices decreased by 50% comparing to the traditional three-level converter systems. Consequently its effectiveness is evaluated by simulation tests based on a 42-kW prototype generator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-phase multiferroic materials are of considerable interest for future memory and sensing applications. Thin films of Aurivillius phase Bi 7Ti3Fe3O21 and Bi6Ti 2.8Fe1.52Mn0.68O18 (possessing six and five perovskite units per half-cell, respectively) have been prepared by chemical solution deposition on c-plane sapphire. Superconducting quantum interference device magnetometry reveal Bi7Ti3Fe 3O21 to be antiferromagnetic (TN = 190 K) and weakly ferromagnetic below 35 K, however, Bi6Ti2.8Fe 1.52Mn0.68O18 gives a distinct room-temperature in-plane ferromagnetic signature (Ms = 0.74 emu/g, μ0Hc =7 mT). Microstructural analysis, coupled with the use of a statistical analysis of the data, allows us to conclude that ferromagnetism does not originate from second phase inclusions, with a confidence level of 99.5%. Piezoresponse force microscopy (PFM) demonstrates room-temperature ferroelectricity in both films, whereas PFM observations on Bi6Ti2.8Fe1.52Mn0.68O18 show Aurivillius grains undergo ferroelectric domain polarization switching induced by an applied magnetic field. Here, we show for the first time that Bi6Ti2.8Fe1.52Mn0.68O18 thin films are both ferroelectric and ferromagnetic and, demonstrate magnetic field-induced switching of ferroelectric polarization in individual Aurivillius phase grains at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The role of the microbiome has become synonymous with human health and disease. Bile acids, as essential components of the microbiome, have gained sustained credibility as potential modulators of cancer progression in several disease models. At physiological concentrations, bile acids appear to influence cancer phenotypes, although conflicting data surrounds their precise physiological mechanism of action. Previously, we demonstrated bile acids destabilised the HIF-1α subunit of the Hypoxic-Inducible Factor-1 (HIF-1) transcription factor. HIF-1 overexpression is an early biomarker of tumour metastasis and is associated with tumour resistance to conventional therapies, and poor prognosis in a range of different cancers. METHODS: Here we investigated the effects of bile acids on the cancer growth and migratory potential of cell lines where HIF-1α is known to be active under hypoxic conditions. HIF-1α status was investigated in A-549 lung, DU-145 prostate and MCF-7 breast cancer cell lines exposed to bile acids (CDCA and DCA). Cell adhesion, invasion, migration was assessed in DU-145 cells while clonogenic growth was assessed in all cell lines. RESULTS: Intracellular HIF-1α was destabilised in the presence of bile acids in all cell lines tested. Bile acids were not cytotoxic but exhibited greatly reduced clonogenic potential in two out of three cell lines. In the migratory prostate cancer cell line DU-145, bile acids impaired cell adhesion, migration and invasion. CDCA and DCA destabilised HIF-1α in all cells and significantly suppressed key cancer progression associated phenotypes; clonogenic growth, invasion and migration in DU-145 cells. CONCLUSIONS: These findings suggest previously unobserved roles for bile acids as physiologically relevant molecules targeting hypoxic tumour progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic cats, which shares many similarities with its human counterpart, human immunodeficiency virus (HIV). FIV infects its main target cell, the CD4+ T lymphocyte, via interactions with its primary receptor CD134 (an activation marker expressed on activated CD4+ T lymphocytes), and, the chemokine receptor CXCR4. According to the different ways in which FIV isolates interact with CD134, FIV may be categorised into two groups. The first group contains strains that tend to dominate during the earlier phase of infection, such as GL8 and CPG41. These strains are characterized by their requirement for an additional interaction with the second cysteine rich domain (CRD2) of the CD134 molecule and are classified as “CRD2-dependent” strains. The second group, on the other hand, contains either laboratory-adapted isolates or isolates that emerge after several years of infection, such as PPR or the GL8 variants that emerged in cats 6 years post experimental infection and were studied in this thesis. These isolates are designated “CRD2-independent” as they can infect target cells without interacting with CRD2 of the CD134 molecule. This study provides the first evidence that FIV compartmentalisation is related to FIV-CD134 usage and the tissue availability of CD134+ target cells. In tissue compartments containing high levels of CD134+ cells such as peripheral blood and lymph nodes, CRD2-dependent viruses predominated, whereas CRD2-independent viruses predominated in compartments with fewer CD134+ cells, such as the thymus. The dynamics of CD4+CD134+ T lymphocytes at different stages of FIV infection were also described. The levels of CD4+CD134+ T lymphocytes, which were very high in the early phase, gradually decreased in the later phase of infection. The dynamics of CD4+CD134+ T lymphocyte numbers appeared to correlate with FIV tropism switching, as more CRD2-independent viruses were isolated from cats in the late phase of infection. Moreover, it was observed that pseudotypes bearing Envs of CRD2-dependent variants infected CD134+ target cells more efficiently than pseudotypes bearing Envs of CRD2-independent variants, confirming the selective advantage of CRD2-dependent variants in environments with high levels of CD134+ target cells. In conclusion, this study demonstrated that target cell types and numbers, as well as their dynamics, play important roles in the selection and expansion of FIV variants within the viral quasispecies. Improved understanding of the roles of target cells in FIV transmission and pathogenesis will provide important information required for the development of an improved, more successful protective FIV vaccine and will provide insight into the development of effective vaccines against other lentiviral infections such as HIV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Memristori on yksi elektroniikan peruskomponenteista vastuksen, kondensaattorin ja kelan lisäksi. Se on passiivinen komponentti, jonka teorian kehitti Leon Chua vuonna 1971. Kesti kuitenkin yli kolmekymmentä vuotta ennen kuin teoria pystyttiin yhdistämään kokeellisiin tuloksiin. Vuonna 2008 Hewlett Packard julkaisi artikkelin, jossa he väittivät valmistaneensa ensimmäisen toimivan memristorin. Memristori eli muistivastus on resistiivinen komponentti, jonka vastusarvoa pystytään muuttamaan. Nimens mukaisesti memristori kykenee myös säilyttämään vastusarvonsa ilman jatkuvaa virtaa ja jännitettä. Tyypillisesti memristorilla on vähintään kaksi vastusarvoa, joista kumpikin pystytään valitsemaan syöttämällä komponentille jännitettä tai virtaa. Tämän vuoksi memristoreita kutsutaankin usein resistiivisiksi kytkimiksi. Resistiivisiä kytkimiä tutkitaan nykyään paljon erityisesti niiden mahdollistaman muistiteknologian takia. Resistiivisistä kytkimistä rakennettua muistia kutsutaan ReRAM-muistiksi (lyhenne sanoista resistive random access memory). ReRAM-muisti on Flash-muistin tapaan haihtumaton muisti, jota voidaan sähköisesti ohjelmoida tai tyhjentää. Flash-muistia käytetään tällä hetkellä esimerkiksi muistitikuissa. ReRAM-muisti mahdollistaa kuitenkin nopeamman ja vähävirtaiseman toiminnan Flashiin verrattuna, joten se on tulevaisuudessa varteenotettava kilpailija markkinoilla. ReRAM-muisti mahdollistaa myös useammin bitin tallentamisen yhteen muistisoluun binäärisen (”0” tai ”1”) toiminnan sijaan. Tyypillisesti ReRAM-muistisolulla on kaksi rajoittavaa vastusarvoa, mutta näiden kahden tilan välille pystytään mahdollisesti ohjelmoimaan useampia tiloja. Muistisoluja voidaan kutsua analogisiksi, jos tilojen määrää ei ole rajoitettu. Analogisilla muistisoluilla olisi mahdollista rakentaa tehokkaasti esimerkiksi neuroverkkoja. Neuroverkoilla pyritään mallintamaan aivojen toimintaa ja suorittamaan tehtäviä, jotka ovat tyypillisesti vaikeita perinteisille tietokoneohjelmille. Neuroverkkoja käytetään esimerkiksi puheentunnistuksessa tai tekoälytoteutuksissa. Tässä diplomityössä tarkastellaan Ta2O5 -perustuvan ReRAM-muistisolun analogista toimintaa pitäen mielessä soveltuvuus neuroverkkoihin. ReRAM-muistisolun valmistus ja mittaustulokset käydään läpi. Muistisolun toiminta on harvoin täysin analogista, koska kahden rajoittavan vastusarvon välillä on usein rajattu määrä tiloja. Tämän vuoksi toimintaa kutsutaan pseudoanalogiseksi. Mittaustulokset osoittavat, että yksittäinen ReRAM-muistisolu kykenee binääriseen toimintaan hyvin. Joiltain osin yksittäinen solu kykenee tallentamaan useampia tiloja, mutta vastusarvoissa on peräkkäisten ohjelmointisyklien välillä suurta vaihtelevuutta, joka hankaloittaa tulkintaa. Valmistettu ReRAM-muistisolu ei sellaisenaan kykene toimimaan pseudoanalogisena muistina, vaan se vaati rinnalleen virtaa rajoittavan komponentin. Myös valmistusprosessin kehittäminen vähentäisi yksittäisen solun toiminnassa esiintyvää varianssia, jolloin sen toiminta muistuttaisi enemmän pseudoanalogista muistia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix power converters are used for transforming one alternating-current power supply to another, with different peak voltage and frequency. There are three input lines, with sinusoidally varying voltages which are 120◦ out of phase one from another, and the output is to be delivered as a similar three-phase supply. The matrix converter switches rapidly, to connect each output line in sequence to each of the input lines in an attempt to synthesize the prescribed output voltages. The switching is carried out at high frequency and it is of practical importance to know the frequency spectra of the output voltages and of the input and output currents. We determine in this paper these spectra using a new method, which has significant advantages over the prior default method (a multiple Fourier series technique), leading to a considerably more direct calculation. In particular, the determination of the input current spectrum is feasible here, whereas it would be a significantly more daunting procedure using the prior method instead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organismal development, homeostasis, and pathology are rooted in inherently probabilistic events. From gene expression to cellular differentiation, rates and likelihoods shape the form and function of biology. Processes ranging from growth to cancer homeostasis to reprogramming of stem cells all require transitions between distinct phenotypic states, and these occur at defined rates. Therefore, measuring the fidelity and dynamics with which such transitions occur is central to understanding natural biological phenomena and is critical for therapeutic interventions.

While these processes may produce robust population-level behaviors, decisions are made by individual cells. In certain circumstances, these minuscule computing units effectively roll dice to determine their fate. And while the 'omics' era has provided vast amounts of data on what these populations are doing en masse, the behaviors of the underlying units of these processes get washed out in averages.

Therefore, in order to understand the behavior of a sample of cells, it is critical to reveal how its underlying components, or mixture of cells in distinct states, each contribute to the overall phenotype. As such, we must first define what states exist in the population, determine what controls the stability of these states, and measure in high dimensionality the dynamics with which these cells transition between states.

To address a specific example of this general problem, we investigate the heterogeneity and dynamics of mouse embryonic stem cells (mESCs). While a number of reports have identified particular genes in ES cells that switch between 'high' and 'low' metastable expression states in culture, it remains unclear how levels of many of these regulators combine to form states in transcriptional space. Using a method called single molecule mRNA fluorescent in situ hybridization (smFISH), we quantitatively measure and fit distributions of core pluripotency regulators in single cells, identifying a wide range of variabilities between genes, but each explained by a simple model of bursty transcription. From this data, we also observed that strongly bimodal genes appear to be co-expressed, effectively limiting the occupancy of transcriptional space to two primary states across genes studied here. However, these states also appear punctuated by the conditional expression of the most highly variable genes, potentially defining smaller substates of pluripotency.

Having defined the transcriptional states, we next asked what might control their stability or persistence. Surprisingly, we found that DNA methylation, a mark normally associated with irreversible developmental progression, was itself differentially regulated between these two primary states. Furthermore, both acute or chronic inhibition of DNA methyltransferase activity led to reduced heterogeneity among the population, suggesting that metastability can be modulated by this strong epigenetic mark.

Finally, because understanding the dynamics of state transitions is fundamental to a variety of biological problems, we sought to develop a high-throughput method for the identification of cellular trajectories without the need for cell-line engineering. We achieved this by combining cell-lineage information gathered from time-lapse microscopy with endpoint smFISH for measurements of final expression states. Applying a simple mathematical framework to these lineage-tree associated expression states enables the inference of dynamic transitions. We apply our novel approach in order to infer temporal sequences of events, quantitative switching rates, and network topology among a set of ESC states.

Taken together, we identify distinct expression states in ES cells, gain fundamental insight into how a strong epigenetic modifier enforces the stability of these states, and develop and apply a new method for the identification of cellular trajectories using scalable in situ readouts of cellular state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free standing diamond films were used to study the effect of diamond surface morphology and microstructure on the electrical properties of Schottky barrier diodes. By using free standing films both the rough top diamond surface and the very smooth bottom surface are available for post-metal deposition. Rectifying electrical contacts were then established either with the smooth or the rough surface. The estimate of doping density from the capacitance-voltage plots shows that the smooth surface has a lower doping density when compared with the top layers of the same film. The results also show that surface roughness does not contribute significantly to the frequency dispersion of the small signal capacitance. The electrical properties of an abrupt asymmetric n(+)(silicon)-p(diamond) junction have also been measured. The I-V curves exhibit at low temperatures a plateau near zero bias, and show inversion of rectification. Capacitance-voltage characteristics show a capacitance minimum with forward bias, which is dependent on the environment conditions. It is proposed that this anomalous effect arises from high level injection of minority carriers into the bulk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical and optical coupling between subcells in a multijunction solar cell affects its external quantum efficiency (EQE) measurement. In this study, we show how a low breakdown voltage of a component subcell impacts the EQE determination of a multijunction solar cell and demands the use of a finely adjusted external voltage bias. The optimum voltage bias for the EQE measurement of a Ge subcell in two different GaInP/GaInAs/Ge triple-junction solar cells is determined both by sweeping the external voltage bias and by tracing the I–V curve under the same light bias conditions applied during the EQE measurement. It is shown that the I–V curve gives rapid and valuable information about the adequate light and voltage bias needed, and also helps to detect problems associated with non-ideal I–V curves that might affect the EQE measurement. The results also show that, if a non-optimum voltage bias is applied, a measurement artifact can result. Only when the problems associated with a non-ideal I–V curve and/or a low breakdown voltage have been discarded, the measurement artifacts, if any, can be attributed to other effects such as luminescent coupling between subcells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free standing diamond films were used to study the effect of diamond surface morphology and microstructure on the electrical properties of Schottky barrier diodes. By using free standing films both the rough top diamond surface and the very smooth bottom surface are available for post-metal deposition. Rectifying electrical contacts were then established either with the smooth or the rough surface. The estimate of doping density from the capacitance-voltage plots shows that the smooth surface has a lower doping density when compared with the top layers of the same film. The results also show that surface roughness does not contribute significantly to the frequency dispersion of the small signal capacitance. The electrical properties of an abrupt asymmetric n(+)(silicon)-p(diamond) junction have also been measured. The I-V curves exhibit at low temperatures a plateau near zero bias, and show inversion of rectification. Capacitance-voltage characteristics show a capacitance minimum with forward bias, which is dependent on the environment conditions. It is proposed that this anomalous effect arises from high level injection of minority carriers into the bulk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage source inverter (VSI) and current voltage source inverter (CSI) are widely used in industrial application. But the traditional VSIs and CSIs have one common problem: can’t boost or buck the voltage come from battery, which make them impossible to be used alone in Hybrid Electric Vehicle (HEV/EV) motor drive application, other issue is the traditional inverter need to add the dead-band time into the control sequence, but it will cause the output waveform distortion. This report presents an impedance source (Z-source network) topology to overcome these problems, it can use one stage instead of two stages (VSI or CSI + boost converter) to buck/boost the voltage come from battery in inverter system. Therefore, the Z-source topology hardware design can reduce switching element, entire system size and weight, minimize the system cost and increase the system efficiency. Also, a modified space vector pulse-width modulation (SVPWM) control method has been selected with the Z-source network together to achieve the best efficiency and lower total harmonic distortion (THD) at different modulation indexes. Finally, the Z-source inverter controlling will modulate under two control sequences: sinusoidal pulse width modulation (SPWM) and SVPWM, and their output voltage, ripple and THD will be compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.