982 resultados para Yb-Tm-Ho triply-doped


Relevância:

30.00% 30.00%

Publicador:

Resumo:

本文利用顺磁稀土离子的诱导化学位移变化的性质,研究了多官能团配体谷胱甘肽(GSH)与稀土的配位作用.在水溶液中GSH通过分子两端的羧基负离子与稀土形成遥爪配位结构.谷氨酸端和甘氨酸端羧基与Eu~(3+)的配位稳定常数分别为12.5±0.1L/mol和100.0±0.5L/mol.从~(13)C化学位移的pH变化曲线求得谷氨酸端和甘氨酸端羧基解离的pK_a值分别为2.20±0.02和3.50±0.04.对Dy~(3+)、Ho~(3+)、Er~(3+)、Tm~(3+)和 Yb~(3+)作用下,GSH的~(13)C位移数据分析表明,配体与这些离子形成同构的配合物,分子两端羧基均可能以双齿形式与稀土配位.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

测定了酸性水溶液中甘氨酸、丝氨酸和天冬氨酸稀土络合物(Ln=La、Pr、Nd、Eu、Tb、Dy、Ho、Er、Tm和Yb)的~(13)C诱导位移。对位移试剂的分析指出,三种氨基酸通过α-羧基以双齿形式配位于稀土,配位键长为0.23nm~0.25nm,天冬氨酸的y-羧基也是配位基团。由本文与文献中已报道的各种氨基酸稀土络合物的~(13)C诱导位移的系统分析表明,配体~(13)C超精细偶合常数A值和结构因子G值有如下规律:(1)│A(C_0)│<│A(C_α)│;A(C_0)为正,A(C_α)为负;(2)│G(C_0)│>│G(C_α)│;配体碳核的G均为负值。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

本文首次报道Ln(OOCCF_3)_3(Ln=Pr、Nd、Sm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Lu在甘油(G)中的正负离子FAB谱、总结了其离子特征。通过亚稳分析、探讨了某些离子的碎裂方式,提出了Ln(Ⅱ)→Ln(Ⅰ)可能的还原变价机制。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

关于双甘肽的~(13)C化学位移行为及其与稀土离子的配位作用前人有过报导。但有关水溶液中双甘肽稀土配合物的结构仍不清楚。本文测定了在重稀土离子Dy~(3+)、Ho~(3+)、Er~(3+)、Tm~(3+)和Yb~(3+)作用下双甘肽~(13)C和~1H的顺磁诱导位移,研究了水溶液中双甘肽稀土配合物的组成及结构。1 实验部分

Relevância:

30.00% 30.00%

Publicador:

Resumo:

采用重稀土离子(Dy、Ho、Er、Tm、Yb)研究了水溶液中L-精氨酸的构象。结果表明,距稀土配位中心4个或4个键以上的配体核的接触位移都很小,在稀土离子附近的配体核具有显著的接触位移。通过对配体磁性核结构因子的实验值进行模拟,建立了水溶液中L-精氨酸的整体构象。在L-精氨酸稀土配合物中,配体的羧基与稀土离子配位,配体的骨架结构位于稀土离子的零偶极位移锥面的外侧。对于羧基的双齿配位模式,计算得到的RE~(3+)-O键长为0.21nm。在溶液中配体以伸展状态存在,分子骨架呈全反式构象。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

测定了在11种稀土离子(La~(3+)、Pr~(3+)、Nd~(3+)、Eu~(3+)、Tb~(3+)、Dy~(3+)、Ho~(3+)、Er~(3+)、Tm~(3+)、Yb~(3+)和Lu~(3+)存在下羟脯氨酸~(13)C的诱导位移和抗磁性稀土配合物体系的~(1)H化学位移与偶合常数。对配合物构象分析表明,在水溶液中羟脯氨酸以空间位阻小的“外向”构象存在,通过羧基与稀土离子形成双齿配位结构,Ln~(3+)-O键长为2.1。在水溶液中巳配位的与游离的氨基酸和水分子间的快速配位交换平衡导致稀土氨基酸配合物具有有效轴对称性。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

本文制备了La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y等十五种稀土与2-乙基己基膦酸单(2-乙基己基)酯的固体配合物,测定了4000-100cm~(-1)的FT-IR光谱,对其主要红外光谱吸收带进行了归属。指认150cm~(-1)为Ln-O键的伸缩振动带,250cm~(-1)附近的谱带为COPO,CCPO骨架扭曲振动与Ln-O键的耦合振动带。结果表明配合物为多聚体系,PO_2与稀土离子可能为桥式配位形式。Ln-O键基本上为离子键。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

研究了ICP-AES法测定高纯氧化镧中十四种稀土杂质的方法。利用简单的加热去溶装置成功地测定了99.99%La_2O_3中14种稀土杂质。10mg/ml La_2O_3基体工作曲线下限为(以氧化物百分含量计算)Ce、Pr、Sm_2×10~(-3);Gd、Tb1×10~(-3);Nd,Lu 8×10~(-4),Er,Ho,Dy4×10~(-4); Tm.Eu 2×10~(-4),Yb 8×10~(-5),Y_4×~(-5)。相对标准偏差为2.8—9.7,回收率为85—114%。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

本文主要运用稳定加液-反应系统对海水中方解石和文石形成时稀土元素的共沉淀现象进行了分析,研究了稀土元素在固-液体系中的迁移、转化和分配。进而在对其定量描述的前提下,研究了稀土元素共沉淀对各种反应条件的响应,并对共沉淀行为的机制进行了探讨。 本实验首先运用pH测试、高精度滴定分析等手段测定了实验中的一些基本参数,如[H+]、碱度和[Ca2+],根据计算结果获得了各碳酸体系要素,并以此为基础建立了5℃、15℃和25℃及pCO2=0.003atm下海水中方解石或文石的沉淀动力学方程。实验结果表明: 1)在各条件下,方解石或文石的沉淀速率(R)和其在海水中过饱和度(Ω)存在很好的线性相关性,即海相碳酸盐的沉淀动力学方程可以通过下面的基本表达式来表示:LogR=k*Log(Ω-1)+b ; 2)过高的稀土元素浓度会对文石或方解石的沉淀产生抑制作用,进而对共沉淀过程中YREEs的分异和分馏产生一定的影响。相比方解石而言,文石的沉淀动力学过程承受稀土元素的干扰能力更强; 3)不同温度下得到的方解石或文石各自的沉淀动力学方程存在明显的差异,表明这一过程受热力学因素控制。相对于方解石而言,温度对文石的沉淀动力学的影响更为显著。 与前人研究不同的是,本实验中YREEs的浓度设定在非常低的范围内,从而避免了过高浓度YREEs对方解石或文石沉淀动力学过程的干扰。在最终的反应液中,各种实验条件非常接近自然环境。有关稀土元素的共沉淀行为主要得出以下定性或定量化结论: 1)YREEs在随方解石或文石的共沉淀过程中,均发生了强烈的分异作用。在方解石实验中,稀土元素的分异系数分布曲线呈凸状分布;而在文石实验中,稀土元素的分异系数随原子序数的增加逐渐减小,遵循镧系收缩的规律。总的来说,稀土元素,尤其轻稀土元素在文石中的分异作用要强于方解石。 2)无论是方解石还是文石,沉淀速率对YREEs的分异作用都有着明显的影响。在方解石中,YREEs的分异系数随沉淀速率的增加呈一致性递减趋势;而在文石中,其分异系数对文石沉淀速率有着截然不同的响应:轻稀土元素(La, Ce, Nd, Sm, Eu, Gd)的分异系数随文石沉淀速率的增加而下降,而重稀土元素(Ho, Y, Tm, Yb , Lu)的分异系数则随文石沉淀速率的增加呈上升趋势。 3)在方解石中YREEs的分异系数之间存在非常好的相互关系,表明这些元素是以成比例的方式参与共沉淀。整个谱系呈现中等强度的分馏,MREE相对于LREE和HREE要更为富集;在文石中由于沉淀速率的作用不同,只有Y、Ho、Yb、Lu等元素的分异系数之间有较好的相互关系。YREEs出现了差异性的强烈分馏,在新生成沉淀中轻稀土元素相对于重稀土元素强烈富集。 4)YREEs在溶液中和碳酸盐晶体表面的碳酸根配位形式对YREEs在共沉淀过程中的分异作用极为重要,YREEs在碳酸盐晶体表面的吸附是整个谱系发生分馏效应的关键环节。对于文石来讲,晶体中有效YREE离子和Ca离子半价大小之间的相近程度是其分馏效应的关键因素;而对于方解石来说,YREEs在方解石晶格中的安置就是其分馏效应的关键控制因子,但在晶格安置中起到关键作用的是YREEs和方解石中O原子之间离子键M-O的键长,而非离子半径。 5)综合YREEs在方解石中的分异作用和分馏效应,我们认为M2(CO3)3-CaCO3和MNa(CO3)2-CaCO3是最为可能的两种固体溶液形成模式。 最为重要的是,对比我们的实验结果与前人在灰岩、叠层石、微生物成因碳酸盐等方解石质载体中的研究成果,两者之间出现了非常好的一致性。我们认为方解石质载体将是重建古海水中稀土元素相关信息的重要工具。相比之下,文石质载体不适合作为类似的载体。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dabie Mountains is a collisional orogenic belt between the North China and Yantze Continental plates. It is the eastern elongation of the Tongbai and Qingling orogen, and is truncated at its east end by the Tan-Lu fault. Jadeite-quartzite belt occurs in the eastern margin of UHPMB from the Dabie Mountains. Geochemical features indicate that the protoliths of the jadeite-quartzite and associated eclogite to be supracrustal rocks. The occurrence of micro-inclusions of coesite in jadeite and garnet confirmed that the continental crust can be subducted to great depth (8 0-100km) and then exhumed rapidly with its UHP mineral signature fairly preserved. Therefore, study of UHP jadeite-quartzite provides important information on subduction of continental crustal rocks and their exhumation histories, as well as the dynamics of plate tectonic processes at convergent margins. The purpose of this paper is to investigate the presence of hydrous component in the jadeite-quartzite belt, significant natural variations in the hydrous component content of UHP minerals and to discuss the role of water in petrology, geochemistry and micro-tectonic. On the basis of our previous studies, some new geological evidences have been found in the jadeite-quartzite belt by researches on petrography, mineralogy, micro-tectonic, hydrous component content of UHP minerals and combined with the study on rheology of materials using microprob, ER, TEM. By research and analysis of these phenomenona, the results obtained are as follows: 1. The existence of fluid during ultra-high pressure metamorphic process. Jadeites, omphacite, garnet, rutile, coesite and quartz from the jadeite-quartzite belt have been investigated by Fourier transform infrared spectrometer and TEM. Results show that all of these minerals contain trace amount of water which occur as hydroxyl and free-water in these minerals. The two-type hydrous components in UHP minerals are indicated stable in the mantle-depth. The results demonstrated that these ultra-high pressure metamorphic minerals, which were derived from continental crust protoliths, they could bring water into the mantle depth during the ultra-high pressure metamorphism. The clusters of water molecules within garnet are very important evidence of the existence of fluid during ultra-high pressure metamorphic process. It indicated that the metamorphic system was not "dry"during the ultra-high pressure stage. 2.The distribution of hydrous component in UHP minerals of jadeite-quartzite. The systematic distribution of hydrous components in UHP minerals are a strong indication that water in these minerals, are controlled by some factors and that the observed variations are not of a random nature. The distribution and concentration of hydrous component is not only correlated with composition of minerals, but also a function of geological environment. Therefore, the hydrous component in the minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transported water molecules with decreasing pressure during their exhumation. And these water molecules can not only promote the deformation of jadeite through hydrolytic weakening, but also may be the part of the retrograde metamorphic fluid. 3.The role of water in the deformed UHP minerals. The jadeite, omphacite, garnet are strong elongated deformation in the jadeite-quartzite from the Dabie Mountains. They are (1) they are developed strong plastic deformation; (2) developed dislocation loop, dislocation wall; (3) the existence of clusters of water molecular in the garnet; and (4) the evolution of micero-tectonic from clusters of water molecular-dislocation loop in omphacite. That indicated that the water weakening controlled the mechanism of deformed minerals. Because the data presented here are not only the existence of clusters of water molecular in the garnet, but also developed strong elongation, high density of dislocation and high aspect ratios, adding microprobe data demonstrate the studied garnet crystals no compositional zoning. Therefore, this indicates that the diffusion process of the grain boundary mobility did not take place in these garnets. On the basis of above features, we consider that it can only be explained by plastic deformation of the garnets. The clusters of water molecules present in garnet was directly associated with mechanical weakening and inducing in plastic deformation of garnet by glissile dislocations. Investigate of LPO, strain analysis, TEM indicated that these clinopyroxenes developed strong elongation, high aspect ratios, and developed dislocation loop, dislocation wall and free dislocations. These indicated that the deformation mechanism of the clinopyroxenes plastically from the Dabie Mountains is dominant dislocation creep under the condition of the UHP metamorphic conditions. There are some bubbles with dislocation loops attached to them in the omphacite crystal. The bubbles attached to the dislocation loops sometimes form a string of bubble beads and some loops are often connected to one another via a common bubble. The water present in omphacite was directly associated with hydrolitic weakening and inducing in plastic deformation of omphacite by dislocations. The role of water in brittle deformation. Using microscopy, deformation has been identified as plastic deformation and brittle deformation in UHP minerals from the Dabie Mountains. The study of micro-tectonic on these minerals shows that the brittle deformation within UHP minerals was related to local stresses. The brittle deformation is interpreted as being caused by an interaction of high fluid pressure, volume changes. The hydroxyl within UHP minerals transported water molecules with decreasing pressure due to their exhumation. However, under eclogite facies conditions, the litho-static pressure is extreme, but a high fluid pressure will reduce the effective stress and make brittle deformation possible. The role of water in prograde metamorphism. Geochemical research on jadeite-quartzite and associated eclogite show that the protoliths of these rocks are supracrustal rocks. With increasing of temperature and pressure, the chlorite, biotite, muscovite was dehydrous reaction and released hydrous component during the subduction of continental lithosphere. The supracrustal rocks were transformed UHP rocks and formed UHP facies assemblage promotely by water introduction, and was retained in UHP minerals as hydrous component. The water within UHP minerals may be one of the retrograde metamorphic fluids. Petrological research on UHP rocks of jadeite-quartzite belt shows that there was existence of local fluids during early retrograde metamorphism. That are: (1) coronal textures and symplectite around relict UHP minerls crystals formed from UHP minerls by hydration reactions; (2) coronal textures of albite around ruitle; and (3) micro-fractures in jadeite or garnet were filled symplectite of Amp + PI + Mt. That indicated that the reactions of early retrograde metamorphism dependent on fluid introduction. These fluids not only promoted retrograde reaction of UHP minerals, but also were facilitate to diffuse intergranular and promote growth in minerals. Therefore, the hydrous component in the UHP minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transport water molecules with decreasing pressure and may take part in the retrograde metamorphic fluid during their exhumation. 7. The role of water in geochemistry of UHP jadeite-quartzite. Geochemical research show that there are major, trace and rare earth element geochemical variations in the jadeite-quartzite from the Changpu district of Dabie Mountains, during retrograde metamorphic processes from the jadeite-quartzite--gneiss. The elements such as SiO_2、FeO、Ba、Zr、Ga、La、Ce、PTN Nd% Sm and Eu increase gradually from the jadeite-quartzite to retrograded jadeite-quartzite and to gneiss, whilst TiO_2. Na_2CK Fe2O_3、Rb、Y、Nb、Gd、Tb、Dy、Ho、Er、Tm、Yb decrease gradually. And its fO_2 keep nearly unchanged during early retrograde metamorphism, but decreased obviously during later retrograde metamorphism. These indicate that such changes are not only controlled by element transformation between mineralogical phases, but also closely relative to fluid-rock interaction in the decompression retrograde metamorphic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution and accumulation of the rare earth elements (REE) in the sediments of the Cochin Estuary and adjacent continental shelf were investigated. The rare earth elements like La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the heavy metals like Mg, V, Cr, Mn, Fe, Cu, Zn, U, Th were analysed by using standard analytical methods. The Post-Archean Australian Shale composition was used to normalise the rare earth elements. It was found that the sediments were more enriched with the lighter rare earth elements than the heavier ones. The positive correlation between the concentrations of REE, Fe and Mn could explain the precipitation of oxyhydroxides in the study area. The factor analysis and correlation analysis suggest common sources of origin for the REEs. From the Ce-anomalies calculated, it was found that an oxic environment predominates in all stations except the station No. 2. The Eu-anomaly gave an idea that the origin of REEs may be from the feldspar. The parameters like total organic carbon, U/Th ratio, authigenic U, Cu/Zn, V/Cr ratios revealed the oxic environment and thus the depositional behaviour of REEs in the region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study is the formation of single phase Zn1−xTMxO thin films by PLD and increase the solubility limit of TM dopants. The TM doped ZnO nanostructures were also grown by hydrothermal method. The structural and morphological variation of ZnO:TM thin films and nanostructures with TM doping concentration is also investigated. The origin and enhancement of ferromagnetism in single phase Zn1−xTMxO thin films and nanostructures using spectroscopic techniques were also studied. The dependence of ablation parameters on the structural and optical properties of ZnO thin films were studied

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we report results on the influence of heavy rare earth ions substitution on microstructure and magnetism of nanocrystalline magnetite. A series of Fe(2.85)RE(0.15)O(4) (RE = Gd, Dy, Ho, Tm and Yb) samples have been prepared by high energy ball milling. Structure/microstructure investigations of two selected samples Fe(2.85)Gd(0.15)O(4) and Fe(2.85)Tm(0.15)O(4), represent an extension of the previously published results on Fe(3)O(4)/gamma-Fe(2)O(3), Fe(2.85)Y(0.15)O(4) and Fe(2.55)In(0.45)O(4) [Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovalekic. Ph. Colomban, Sol. State Sciences 8 (2006) 908], while magnetic characterization has been done for all the samples. Crystallite/particle size and strain determined by X-ray diffractometry and Transmission electron microscopy (TEM) confirmed the nanostructured nature of the mechanosynthesized materials. X-ray powder diffraction was used to analyze anisotropic line broadening effects through the Rietveld method. The size anisotropy was found to be small while strain anisotropy was large, indicating nonuniform distribution of deffects in the presence of Gd and Tm in the crystal structure. Superparamagnetic(SPM) behavior at room temperature was observed for all samples studied. The Y-substituted Fe(3)O(4) had the largest He and the lowest M(S). We discuss the changes in magnetic properties in relation to their magnetic anisotropy and microstructure. High field irreversibility (H>20kOe) in ZFC/FC magnetization versus temperature indicates the existence of high magnetocrystalline and/or strain induced anisotropy. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Europium-doped lanthanum aluminate (LaAlO(3)) powder was prepared by using a combustion method. The crystallization, surface morphology, specific surface area and luminescence properties of the samples have been investigated. Photoluminescence studies of Eu doped LaAlO(3) showed orange-reddish emission due to Eu(3+) ions. LaAlO(3):Eu(3+) exhibits one thermally stimulated luminescence (TSL) peak around 400 degrees C. Room temperature electron spin resonance spectrum of irradiated phosphor appears to be a superposition of two centres. One of them (centre I) with principal g-value 2.017 is identified as an O(-) centre while centre II with an isotropic g-value 2.011 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre observed during thermal annealing around 300 degrees C grows with the annealing temperature. This centre (assigned to F(+) centre) originates from an F-centre (oxygen vacancy with two electrons) and the F-centre along with the associated F(+) centre appear to correlate with the observed TSL peak in LaAlO(3):Eu(3+) phosphor. The activation energy for this peak has been determined to be 1.54 eV from TSL data. (C) 2010 Elsevier Masson SAS. All rights reserved.