973 resultados para WiFi 802.11n


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This technical report tackles the hidden-node problem in WSNs and proposes HNAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this technical report will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IEEE 802.15.4/Zigbee protocols are a promising technology for Wireless Sensor Networks (WSNs). This paper shares our experience on the implementation and use of these protocols and related technologies in WSNs. We present problems and challenges we have been facing in implementing an IEEE 802.15.4/ZigBee stack for TinyOS in a two-folded perspective: IEEE 802.15.4/ZigBee protocol standards limitations (ambiguities and open issues) and technological limitations (hardware and software). Concerning the former, we address challenges for building scalable and synchronized multi-cluster ZigBee networks, providing a trade-off between timeliness and energy-efficiency. On the latter issue, we highlight implementation problems in terms of hardware, timer handling and operating system limitations. We also report on our experience from experimental test-beds, namely on physical layer aspects such as coexistence problems between IEEE 802.15.4 and 802.11 radio channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This technical report describes the implementation details of the Time Division Beacon Scheduling Approach in IEEE 802.15.4/ZigBee Cluster-Tree Networks. In this technical report we describe the implementation details, focusing on some aspects of the ZigBee Network Layer and the Time Division Beacon Scheduling mechanism. This report demonstrates the feasibility of our approach based on the evaluation of the experimental results. We also present an overview of the ZigBee address and tree-routing scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This paper tackles the hiddennode problem in WSNs and proposes H-NAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this paper will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modelling the fundamental performance limits of wireless sensor networks (WSNs) is of paramount importance to understand the behaviour of WSN under worst case conditions and to make the appropriate design choices. In that direction, this paper contributes with a methodology for modelling cluster tree WSNs with a mobile sink. We propose closed form recurrent expressions for computing the worst case end to end delays, buffering and bandwidth requirements across any source-destination path in the cluster tree assuming error free channel. We show how to apply our theoretical results to the specific case of IEEE 802.15.4/ZigBee WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study, therefore validating the theoretical results through experimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ART-WiSe (Architecture for Real-Time communications in Wireless Sensor Networks) framework aims at the design of new communication architectures and mechanisms for time-sensitive Wireless Sensor Networks (WSNs). We adopted a two-tiered architecture where an overlay Wireless Local Area Network (Tier 2) serves as a backbone for a WSN (Tier 1), relying on existing standard communication protocols and commercial-off-the-shell (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. In this line, a test-bed application is being developed for assessing, validating and demonstrating the ART-WiSe architecture. A pursuit-evasion application was chosen since it fulfils a number of requirements, namely it is feasible and appealing and imposes some stress to the architecture in terms of timeliness. To develop the testbed based on the previously referred technologies, an implementation of the IEEE 8021.5.4/ZigBee protocols is being carried out, since there is no open source available to the community. This paper highlights some relevant aspects of the ART-WiSe architecture, provides some intuition on the protocol stack implementation and presents a general view over the envisaged test-bed application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the maximum number of child routers and the maximum number of child nodes for each parent router. Using Network Calculus, we derive “plug-and-play” expressions for the endto- end delay bounds, buffering and bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of a simple and effective methodology for the design of such WSNs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project was developed within the ART-WiSe framework of the IPP-HURRAY group (http://www.hurray.isep.ipp.pt), at the Polytechnic Institute of Porto (http://www.ipp.pt). The ART-WiSe – Architecture for Real-Time communications in Wireless Sensor networks – framework (http://www.hurray.isep.ipp.pt/art-wise) aims at providing new communication architectures and mechanisms to improve the timing performance of Wireless Sensor Networks (WSNs). The architecture is based on a two-tiered protocol structure, relying on existing standard communication protocols, namely IEEE 802.15.4 (Physical and Data Link Layers) and ZigBee (Network and Application Layers) for Tier 1 and IEEE 802.11 for Tier 2, which serves as a high-speed backbone for Tier 1 without energy consumption restrictions. Within this trend, an application test-bed is being developed with the objectives of implementing, assessing and validating the ART-WiSe architecture. Particularly for the ZigBee protocol case; even though there is a strong commercial lobby from the ZigBee Alliance (http://www.zigbee.org), there is neither an open source available to the community for this moment nor publications on its adequateness for larger-scale WSN applications. This project aims at fulfilling these gaps by providing: a deep analysis of the ZigBee Specification, mainly addressing the Network Layer and particularly its routing mechanisms; an identification of the ambiguities and open issues existent in the ZigBee protocol standard; the proposal of solutions to the previously referred problems; an implementation of a subset of the ZigBee Network Layer, namely the association procedure and the tree routing on our technological platform (MICAz motes, TinyOS operating system and nesC programming language) and an experimental evaluation of that routing mechanism for WSNs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fingerprinting is an indoor location technique, based on wireless networks, where data stored during the offline phase is compared with data collected by the mobile device during the online phase. In most of the real-life scenarios, the mobile node used throughout the offline phase is different from the mobile nodes that will be used during the online phase. This means that there might be very significant differences between the Received Signal Strength values acquired by the mobile node and the ones stored in the Fingerprinting Map. As a consequence, this difference between RSS values might contribute to increase the location estimation error. One possible solution to minimize these differences is to adapt the RSS values, acquired during the online phase, before sending them to the Location Estimation Algorithm. Also the internal parameters of the Location Estimation Algorithms, for example the weights of the Weighted k-Nearest Neighbour, might need to be tuned for every type of terminal. This paper focuses both approaches, using Direct Search optimization methods to adapt the Received Signal Strength and to tune the Location Estimation Algorithm parameters. As a result it was possible to decrease the location estimation error originally obtained without any calibration procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of smartphones with Wireless LAN (WiFi) network interfaces brought new challenges to application developers. The expected increase of users connectivity will impact their expectations for example on the performance of background applications. Unfortunately, the number and breadth of the studies on the new patterns of user mobility and connectivity that result from the emergence of smartphones is still insufficient to support this claim. This paper contributes with preliminary results on a large scale study of the usage pattern of about 49000 devices and 31000 users who accessed at least one access point of the eduroam WiFi network on the campuses of the Lisbon Polytechnic Institute. Results confirm that the increasing number of smartphones resulted in significant changes to the pattern of use, with impact on the amount of traffic and users connection time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização de Telecomunicações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicações e Multimédia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters’ duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.