976 resultados para White-matter Damage
Resumo:
CONTEXT: Recent magnetic resonance imaging studies have attempted to relate volumetric brain measurements in early schizophrenia to clinical and functional outcome some years later. These studies have generally been negative, perhaps because gray and white matter volumes inaccurately assess the underlying dysfunction that might be predictive of outcome. OBJECTIVE: To investigate the predictive value of frontal and temporal spectroscopy measures for outcome in patients with first-episode psychoses. DESIGN: Left prefrontal cortex and left mediotemporal lobe voxels were assessed using proton magnetic resonance spectroscopy to provide the ratio of N-acetylaspartate (NAA) and choline-containing compounds to creatine and phosphocreatine (Cr) (NAA/Cr ratio). These data were used to predict outcome at 18 months after admission, as assessed by a systematic medical record audit. SETTING: Early psychosis clinic. PARTICIPANTS: Forty-six patients with first-episode psychosis. MAIN OUTCOME MEASURES: We used regression models that included age at imaging and duration of untreated psychosis to predict outcome scores on the Global Assessment of Functioning Scale, Clinical Global Impression scales, and Social and Occupational Functional Assessment Scale, as well as the number of admissions during the treatment period. We then further considered the contributions of premorbid function and baseline level of negative symptoms. RESULTS: The only spectroscopic predictor of outcome was the NAA/Cr ratio in the prefrontal cortex. Low scores on this variable were related to poorer outcome on all measures. In addition, the frontal NAA/Cr ratio explained 17% to 30% of the variance in outcome. CONCLUSIONS: Prefrontal neuronal dysfunction is an inconsistent feature of early psychosis; rather, it is an early marker of poor prognosis across the first years of illness. The extent to which this can be used to guide treatment and whether it predicts outcome some years after first presentation are questions for further research.
Resumo:
Previous studies revealed personality changes in elderly patients with early-onset depression (EOD) that persist in euthymic stages. However, depression in older patients is a complex disorder that may affect not only personality, but also cognition and brain structure. To address this issue, a cross-sectional comparison and 2-year follow-up of 28 EOD elderly patients and 48 healthy controls included detailed neurocognitive assessment, estimates of brain volumes in limbic areas and white matter hyperintensities, as well as evaluation of the Five Factor Model of personality, in a remitted mood state. Results revealed that cognitive performances as well as brain volumes were preserved in EOD patients both at baseline and at follow-up. The increased Neuroticism factor and Anxiety facet scores as well as the decreased Warmth and Positive Emotions facet scores found at baseline reached the level of healthy controls after 2years. Only the Depression facet scores remained significantly higher in EOD patients compared to controls upon follow-up. Results were independent of depressive relapse since baseline (25% of patients). These findings suggest that both cognitive performances and brain volumes show long-term preservation in older EOD patients. In contrast, the depression-related personality facet might be a trait like marker that persists in the long-term evolution of this disorder.
Resumo:
Purpose of review: An overview of recent advances in structural neuroimaging and their impact on movement disorders research is presented. Recent findings: Novel developments in computational neuroanatomy and improvements in magnetic resonance image quality have brought further insight into the pathophysiology of movement disorders. Sophisticated automated techniques allow for sensitive and reliable in-vivo differentiation of phenotype/genotype related traits and their interaction even at presymptomatic stages of disease. Summary: Voxel-based morphometry consistently demonstrates well defined patterns of brain structure changes in movement disorders. Advanced stages of idiopathic Parkinson's disease are characterized by grey matter volume decreases in basal ganglia. Depending on the presence of cognitive impairment, volume changes are reported in widespread cortical and limbic areas. Atypical Parkinsonian syndromes still pose a challenge for accurate morphometry-based classification, especially in early stages of disease progression. Essential tremor has been mainly associated with thalamic and cerebellar changes. Studies on preclinical Huntington's disease show progressive loss of tissue in the caudate and cortical thinning related to distinct motor and cognitive phenotypes. Basal ganglia volume in primary dystonia reveals an interaction between genotype and phenotype such that brain structure changes are modulated by the presence of symptoms under the influence of genetic factors. Tics in Tourette's syndrome correlate with brain structure changes in limbic, motor and associative fronto-striato-parietal circuits. Computational neuroanatomy provides useful tools for in-vivo assessment of brain structure in movement disorders, allowing for accurate classification in early clinical stages as well as for monitoring therapy effects and/or disease progression.
Resumo:
We recently described the neuroimaging and clinical findings in 6 children with cerebellar clefts and proposed that they result from disruptive changes following prenatal cerebellar hemorrhage. We now report an additional series of 9 patients analyzing the clinical and neuroimaging findings. The clefts were located in the left cerebellar hemisphere in 5 cases, in the right in 3, and bilaterally in one child who had bilateral cerebellar hemorrhages as a preterm infant at 30 weeks gestation. In one patient born at 24 weeks of gestation a unilateral cerebellar hemorrhage has been found at the age of 4 months. Other findings included disordered alignment of the folia and fissures, an irregular gray/white matter junction, and abnormal arborization of the white matter in all cases. Supratentorial abnormalities were found in 4 cases. All but 2 patients were born at term. We confirm the distinct neuroimaging pattern of cerebellar clefts. Considering the documented fetal cerebellar hemorrhage in our first series, we postulate that cerebellar clefts usually represent residual disruptive changes after a prenatal cerebellar hemorrhage. Exceptionally, as now documented in 2 patients, cerebellar clefts can be found after neonatal cerebellar hemorrhages in preterm infants. The short-term outcome in these children was variable.
Resumo:
M. Santos, G. Gold, E. Kövari, F. R. Herrmann, P. R. Hof, C. Bouras and P. Giannakopoulos (2010) Neuropathology and Applied Neurobiology36, 661-672 Neuropathological analysis of lacunes and microvascular lesions in late-onset depression Aims: Previous neuropathological studies documented that small vascular and microvascular pathology is associated with cognitive decline. More recently, we showed that thalamic and basal ganglia lacunes are associated with post-stroke depression and may affect emotional regulation. The present study examines whether this is also the case for late-onset depression. Methods: We performed a detailed analysis of small macrovascular and microvascular pathology in the post mortem brains of 38 patients with late-onset major depression (LOD) and 29 healthy elderly controls. A clinical diagnosis of LOD was established while the subjects were alive using the DSM-IV criteria. Additionally, we retrospectively reviewed all charts for the presence of clinical criteria of vascular depression. Neuropathological evaluation included bilateral semi-quantitative assessment of lacunes, deep white matter and periventricular demyelination, cortical microinfarcts and both focal and diffuse gliosis. The association between vascular burden and LOD was investigated using Fisher's exact test and univariate and multivariate logistic regression models. Results: Neither the existence of lacunes nor the presence of microvascular ischaemic lesions was related to occurrence of LOD. Similarly, there was no relationship between vascular lesion scores and LOD. This was also the case within the subgroup of LOD patients fulfilling the clinical criteria for vascular depression. Conclusions: Our results challenge the vascular depression hypothesis by showing that neither deep white matter nor periventricular demyelination is associated with LOD. In conjunction with our previous observations in stroke patients, they also imply that the impact of lacunes on mood may be significant solely in the presence of acute brain compromise.
Resumo:
BACKGROUND AND PURPOSE: To investigate the effect of chronic hyperglycemia on cerebral microvascular remodeling using perfusion computed tomography. METHODS: We retrospectively identified 26 patients from our registry of 2453 patients who underwent a perfusion computed tomographic study and had their hemoglobin A1c (HbA1c) measured. These 26 patients were divided into 2 groups: those with HbA1c>6.5% (n=15) and those with HbA1c≤6.5% (n=11). Perfusion computed tomographic studies were processed using a delay-corrected, deconvolution-based software. Perfusion computed tomographic values were compared between the 2 patient groups, including mean transit time, which relates to the cerebral capillary architecture and length. RESULTS: Mean transit time values in the nonischemic cerebral hemisphere were significantly longer in the patients with HbA1c>6.5% (P=0.033), especially in the white matter (P=0.005). Significant correlation (R=0.469; P=0.016) between mean transit time and HbA1c level was observed. CONCLUSIONS: Our results from a small sample suggest that chronic hyperglycemia may be associated with cerebral microvascular remodeling in humans. Additional prospective studies with larger sample size are required to confirm this observation.
Resumo:
The occurrence of microvascular and small macrovascular lesions and Alzheimer's disease (AD)-related pathology in the aging human brain is a well-described phenomenon. Although there is a wide consensus about the relationship between macroscopic vascular lesions and incident dementia, the cognitive consequences of the progressive accumulation of these small vascular lesions in the human brain are still a matter of debate. Among the vast group of small vessel-related forms of ischemic brain injuries, the present review discusses the cognitive impact of cortical microinfarcts, subcortical gray matter and deep white matter lacunes, periventricular and diffuse white matter demyelinations, and focal or diffuse gliosis in old age. A special focus will be on the sub-types of microvascular lesions not detected by currently available neuroimaging studies in routine clinical settings. After providing a critical overview of in vivo data on white matter demyelinations and lacunes, we summarize the clinicopathological studies performed by our center in large cohorts of individuals with microvascular lesions and concomitant AD-related pathology across two age ranges (the younger old, 65-85 years old, versus the oldest old, nonagenarians and centenarians). In conjunction with other autopsy datasets, these observations fully support the idea that cortical microinfarcts are the only consistent determinant of cognitive decline across the entire spectrum from pure vascular cases to cases with combined vascular and AD lesion burden.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
Recent data have implicated thrombospondin-1 (TSP-1) signaling in the acute neuropathological events that occur in microvascular endothelial cells (ECs) following spinal cord injury (SCI) (Benton et al., 2008b). We hypothesized that deletion of TSP-1 or its receptor CD47 would reduce these pathological events following SCI. CD47 is expressed in a variety of tissues, including vascular ECs and neutrophils. CD47 binds to TSP-1 and inhibits angiogenesis. CD47 also binds to the signal regulatory protein (SIRP)α and facilitates neutrophil diapedesis across ECs to sites of injury. After contusive SCI, TSP-1(-/-) mice did not show functional improvement compared to wildtype (WT) mice. CD47(-/-) mice, however, exhibited functional locomotor improvements and greater white matter sparing. Whereas targeted deletion of either CD47 or TSP-1 improved acute epicenter vascularity in contused mice, only CD47 deletion reduced neutrophil diapedesis and increased microvascular perfusion. An ex vivo model of the CNS microvasculature revealed that CD47(-/-)-derived microvessels (MVs) prominently exhibit adherent WT or CD47(-/-) neutrophils on the endothelial lumen, whereas WT-derived MVs do not. This implicates a defect in diapedesis mediated by the loss of CD47 expression on ECs. In vitro transmigration assays confirmed the role of SIRPα in neutrophil diapedesis through EC monolayers. We conclude that CD47 deletion modestly, but significantly, improves functional recovery from SCI via an increase in vascular patency and a reduction of SIRPα-mediated neutrophil diapedesis, rather than the abrogation of TSP-1-mediated anti-angiogenic signaling.
Resumo:
SUMMARY:: The EEG patterns seen with encephalopathies can be correlated to cerebral imaging findings including head computerized tomography and MRI. Background slowing without slow-wave intrusion is seen with acute and chronic cortical impairments that spare subcortical white matter. Subcortical/white matter structural abnormalities or hydrocephalus may produce projected slow-wave activity, while clinical entities involving both cortical and subcortical regions (diffuse cerebral abnormalities) engender both background slowing and slow-wave activity. Triphasic waves are seen with hepatic and renal insufficiency or medication toxicities (e.g., lithium, baclofen) in the absence of a significant cerebral imaging abnormality, Conversely, subcortical/white matter abnormalities may facilitate the appearance of triphasic waves without significant hepatic, renal, or toxic comorbidities. More specific syndromes, such as Jakob-Creutzfeldt disease, autoimmune limbic encephalitis, autoimmune corticosteroid-responsive encephalopathy with thyroid autoimmunity, sepsis-associated encephalopathy, and acute disseminated encephalomyelitis, have imaging/EEG changes that are variable but which may include slowing and epileptiform activity. This overview highlighting EEG-imaging correlations may help the treating physician in the diagnosis, and hence the appropriate treatment, of patients with encephalopathy.
Resumo:
Normal ageing is associated with characteristic changes in brain microstructure. Although in vivo neuroimaging captures spatial and temporal patterns of age-related changes of anatomy at the macroscopic scale, our knowledge of the underlying (patho)physiological processes at cellular and molecular levels is still limited. The aim of this study is to explore brain tissue properties in normal ageing using quantitative magnetic resonance imaging (MRI) alongside conventional morphological assessment. Using a whole-brain approach in a cohort of 26 adults, aged 18-85years, we performed voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) of diffusion tensor, magnetization transfer (MT), R1, and R2* relaxation parameters. We found age-related reductions in cortical and subcortical grey matter volume paralleled by changes in fractional anisotropy (FA), mean diffusivity (MD), MT and R2*. The latter were regionally specific depending on their differential sensitivity to microscopic tissue properties. VBQ of white matter revealed distinct anatomical patterns of age-related change in microstructure. Widespread and profound reduction in MT contrasted with local FA decreases paralleled by MD increases. R1 reductions and R2* increases were observed to a smaller extent in overlapping occipito-parietal white matter regions. We interpret our findings, based on current biophysical models, as a fingerprint of age-dependent brain atrophy and underlying microstructural changes in myelin, iron deposits and water. The VBQ approach we present allows for systematic unbiased exploration of the interaction between imaging parameters and extends current methods for detection of neurodegenerative processes in the brain. The demonstrated parameter-specific distribution patterns offer insights into age-related brain structure changes in vivo and provide essential baseline data for studying disease against a background of healthy ageing.
Resumo:
Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.
Resumo:
PURPOSE: To use diffusion-tensor (DT) magnetic resonance (MR) imaging in patients with essential tremor who were treated with transcranial MR imaging-guided focused ultrasound lesion inducement to identify the structural connectivity of the ventralis intermedius nucleus of the thalamus and determine how DT imaging changes correlated with tremor changes after lesion inducement. MATERIALS AND METHODS: With institutional review board approval, and with prospective informed consent, 15 patients with medication-refractory essential tremor were enrolled in a HIPAA-compliant pilot study and were treated with transcranial MR imaging-guided focused ultrasound surgery targeting the ventralis intermedius nucleus of the thalamus contralateral to their dominant hand. Fourteen patients were ultimately included. DT MR imaging studies at 3.0 T were performed preoperatively and 24 hours, 1 week, 1 month, and 3 months after the procedure. Fractional anisotropy (FA) maps were calculated from the DT imaging data sets for all time points in all patients. Voxels where FA consistently decreased over time were identified, and FA change in these voxels was correlated with clinical changes in tremor over the same period by using Pearson correlation. RESULTS: Ipsilateral brain structures that showed prespecified negative correlation values of FA over time of -0.5 or less included the pre- and postcentral subcortical white matter in the hand knob area; the region of the corticospinal tract in the centrum semiovale, in the posterior limb of the internal capsule, and in the cerebral peduncle; the thalamus; the region of the red nucleus; the location of the central tegmental tract; and the region of the inferior olive. The contralateral middle cerebellar peduncle and bilateral portions of the superior vermis also showed persistent decrease in FA over time. There was strong correlation between decrease in FA and clinical improvement in hand tremor 3 months after lesion inducement (P < .001). CONCLUSION: DT MR imaging after MR imaging-guided focused ultrasound thalamotomy depicts changes in specific brain structures. The magnitude of the DT imaging changes after thalamic lesion inducement correlates with the degree of clinical improvement in essential tremor.
Resumo:
Autism spectrum disorder (ASD) symptoms frequently occur in subjects with attention deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural correlates, no study to date has investigated these structural correlates within a framework that robustly accounts for the phenotypic overlap between the two disorders. The presence of ASD symptoms was measured by the parent-reported Children's Social and Behavioural Questionnaire (CSBQ) in ADHD subjects (n = 180), their unaffected siblings (n = 118) and healthy controls (n = 146). ADHD symptoms were assessed by a structured interview (K-SADS-PL) and the Conners' ADHD questionnaires. Whole brain T1-weighted MPRAGE images were acquired and the structural MRI correlates of ASD symptom scores were analysed by modelling ASD symptom scores against white matter (WM) and grey matter (GM) volumes using mixed effects models which controlled for ADHD symptom levels. ASD symptoms were significantly elevated in ADHD subjects relative to both controls and unaffected siblings. ASD scores were predicted by the interaction between WM and GM volumes. Increasing ASD score was associated with greater GM volume. Equivocal results from previous structural studies in ADHD and ASD may be due to the fact that comorbidity has not been taken into account in studies to date. The current findings stress the need to account for issues of ASD comorbidity in ADHD.
Resumo:
Tractography algorithms provide us with the ability to non-invasively reconstruct fiber pathways in the white matter (WM) by exploiting the directional information described with diffusion magnetic resonance. These methods could be divided into two major classes, local and global. Local methods reconstruct each fiber tract iteratively by considering only directional information at the voxel level and its neighborhood. Global methods, on the other hand, reconstruct all the fiber tracts of the whole brain simultaneously by solving a global energy minimization problem. The latter have shown improvements compared to previous techniques but these algorithms still suffer from an important shortcoming that is crucial in the context of brain connectivity analyses. As no anatomical priors are usually considered during the reconstruction process, the recovered fiber tracts are not guaranteed to connect cortical regions and, as a matter of fact, most of them stop prematurely in the WM; this violates important properties of neural connections, which are known to originate in the gray matter (GM) and develop in the WM. Hence, this shortcoming poses serious limitations for the use of these techniques for the assessment of the structural connectivity between brain regions and, de facto, it can potentially bias any subsequent analysis. Moreover, the estimated tracts are not quantitative, every fiber contributes with the same weight toward the predicted diffusion signal. In this work, we propose a novel approach for global tractography that is specifically designed for connectivity analysis applications which: (i) explicitly enforces anatomical priors of the tracts in the optimization and (ii) considers the effective contribution of each of them, i.e., volume, to the acquired diffusion magnetic resonance imaging (MRI) image. We evaluated our approach on both a realistic diffusion MRI phantom and in vivo data, and also compared its performance to existing tractography algorithms.