850 resultados para Wavelet Packet and Support Vector Machine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is based on the need of finding what kind of problems Finnish SMEs face in Russian market and how they could be supported. Used support activities in certain levels of internationalization and internationalization patterns are evaluated, international experience of entrepreneur is compared to used support activities and the most challenging pillars in Russia from the Institutional Theory are defined. The empirical part of the study is a semi structured qualitative analysis of ten case companies that represent different industry fields. All of them are SMEs and they represent different levels of internationalization and internationalization patterns. The results of this study indicated that usefulness of support activities have to be evaluated case by case. All the companies are individual organizations and usefulness of support activities have to be evaluated according to the actual situation of the company. International experience of manager has effect on the use of support activities. SMEs identified many problems related to pillars of Institutional theory and regulative environment seems to be the most challenging one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The review of intelligent machines shows that the demand for new ways of helping people in perception of the real world is becoming higher and higher every year. This thesis provides information about design and implementation of machine vision for mobile assembly robot. The work has been done as a part of LUT project in Laboratory of Intelligent Machines. The aim of this work is to create a working vision system. The qualitative and quantitative research were done to complete this task. In the first part, the author presents the theoretical background of such things as digital camera work principles, wireless transmission basics, creation of live stream, methods used for pattern recognition. Formulas, dependencies and previous research related to the topic are shown. In the second part, the equipment used for the project is described. There is information about the brands, models, capabilities and also requirements needed for implementation. Although, the author gives a description of LabVIEW software, its add-ons and OpenCV which are used in the project. Furthermore, one can find results in further section of considered thesis. They mainly represented by screenshots from cameras, working station and photos of the system. The key result of this thesis is vision system created for the needs of mobile assembly robot. Therefore, it is possible to see graphically what was done on examples. Future research in this field includes optimization of the pattern recognition algorithm. This will give less response time for recognizing objects. Presented by author system can be used also for further activities which include artificial intelligence usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to gain an in-depth understanding of the lived experiences of parental pressure and support for males who withdrew from competitive youth hockey. A phenomenological approach was used to explore this phenomenon and develop meaning from the participants' experiences. Data for this study was collected by conducting one in-depth interview with each of the seven participants. Fourteen themes emerged as a result of the data analysis. These themes were grouped into three clusters: (1) Description of parental involvement: “I want them to be there and help me”; (2) Perceived impacts of parental involvement: “I felt like he actually cared”; and (3) Impact of parental involvement on commitment: “I kind of miss hockey now”. The descriptions provided by the participants in this study, and the themes that emerged, offer insight into what it is like for young males to experience parental involvement in competitive youth hockey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to understand the experiences of Canada’s high performance athletes who have benefitted from Own the Podium (OTP)-recommended funding and support leading up to an Olympic or Paralympic Games. OTP, a nonprofit agency, is responsible for determining the overall investment strategy for high performance sport in Canada through recommendations to support national sport organizations (NSOs) with the aim to improve Canadian performances at the Olympic and Paralympic Games. For this study, data were collected through in-depth interviews with eleven Canadian high performance athletes (i.e., single-sport Summer/Winter Olympians and Paralympians and recently retired athletes). Analysis of the data resulted in twelve overarching themes; resources, pressure, missing gap, results, targeting, stress, expectations, boost in confidence, OTP relationship, OTP name, pre/post OTP, and lost funding. Overall, results from this exploratory research indicate that athletes generally had a favourable perception regarding OTP-recommended funding and support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'interface cerveau-ordinateur (ICO) décode les signaux électriques du cerveau requise par l’électroencéphalographie et transforme ces signaux en commande pour contrôler un appareil ou un logiciel. Un nombre limité de tâches mentales ont été détectés et classifier par différents groupes de recherche. D’autres types de contrôle, par exemple l’exécution d'un mouvement du pied, réel ou imaginaire, peut modifier les ondes cérébrales du cortex moteur. Nous avons utilisé un ICO pour déterminer si nous pouvions faire une classification entre la navigation de type marche avant et arrière, en temps réel et en temps différé, en utilisant différentes méthodes. Dix personnes en bonne santé ont participé à l’expérience sur les ICO dans un tunnel virtuel. L’expérience fut a était divisé en deux séances (48 min chaque). Chaque séance comprenait 320 essais. On a demandé au sujets d’imaginer un déplacement avant ou arrière dans le tunnel virtuel de façon aléatoire d’après une commande écrite sur l'écran. Les essais ont été menés avec feedback. Trois électrodes ont été montées sur le scalp, vis-à-vis du cortex moteur. Durant la 1re séance, la classification des deux taches (navigation avant et arrière) a été réalisée par les méthodes de puissance de bande, de représentation temporel-fréquence, des modèles autorégressifs et des rapports d’asymétrie du rythme β avec classificateurs d’analyse discriminante linéaire et SVM. Les seuils ont été calculés en temps différé pour former des signaux de contrôle qui ont été utilisés en temps réel durant la 2e séance afin d’initier, par les ondes cérébrales de l'utilisateur, le déplacement du tunnel virtuel dans le sens demandé. Après 96 min d'entrainement, la méthode « online biofeedback » de la puissance de bande a atteint une précision de classification moyenne de 76 %, et la classification en temps différé avec les rapports d’asymétrie et puissance de bande, a atteint une précision de classification d’environ 80 %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les milieux humides remplissent plusieurs fonctions écologiques d’importance et contribuent à la biodiversité de la faune et de la flore. Même s’il existe une reconnaissance croissante sur l’importante de protéger ces milieux, il n’en demeure pas moins que leur intégrité est encore menacée par la pression des activités humaines. L’inventaire et le suivi systématique des milieux humides constituent une nécessité et la télédétection est le seul moyen réaliste d’atteindre ce but. L’objectif de cette thèse consiste à contribuer et à améliorer la caractérisation des milieux humides en utilisant des données satellites acquises par des radars polarimétriques en bande L (ALOS-PALSAR) et C (RADARSAT-2). Cette thèse se fonde sur deux hypothèses (chap. 1). La première hypothèse stipule que les classes de physionomies végétales, basées sur la structure des végétaux, sont plus appropriées que les classes d’espèces végétales car mieux adaptées au contenu informationnel des images radar polarimétriques. La seconde hypothèse stipule que les algorithmes de décompositions polarimétriques permettent une extraction optimale de l’information polarimétrique comparativement à une approche multipolarisée basée sur les canaux de polarisation HH, HV et VV (chap. 3). En particulier, l’apport de la décomposition incohérente de Touzi pour l’inventaire et le suivi de milieux humides est examiné en détail. Cette décomposition permet de caractériser le type de diffusion, la phase, l’orientation, la symétrie, le degré de polarisation et la puissance rétrodiffusée d’une cible à l’aide d’une série de paramètres extraits d’une analyse des vecteurs et des valeurs propres de la matrice de cohérence. La région du lac Saint-Pierre a été sélectionnée comme site d’étude étant donné la grande diversité de ses milieux humides qui y couvrent plus de 20 000 ha. L’un des défis posés par cette thèse consiste au fait qu’il n’existe pas de système standard énumérant l’ensemble possible des classes physionomiques ni d’indications précises quant à leurs caractéristiques et dimensions. Une grande attention a donc été portée à la création de ces classes par recoupement de sources de données diverses et plus de 50 espèces végétales ont été regroupées en 9 classes physionomiques (chap. 7, 8 et 9). Plusieurs analyses sont proposées pour valider les hypothèses de cette thèse (chap. 9). Des analyses de sensibilité par diffusiogramme sont utilisées pour étudier les caractéristiques et la dispersion des physionomies végétales dans différents espaces constitués de paramètres polarimétriques ou canaux de polarisation (chap. 10 et 12). Des séries temporelles d’images RADARSAT-2 sont utilisées pour approfondir la compréhension de l’évolution saisonnière des physionomies végétales (chap. 12). L’algorithme de la divergence transformée est utilisé pour quantifier la séparabilité entre les classes physionomiques et pour identifier le ou les paramètres ayant le plus contribué(s) à leur séparabilité (chap. 11 et 13). Des classifications sont aussi proposées et les résultats comparés à une carte existante des milieux humide du lac Saint-Pierre (14). Finalement, une analyse du potentiel des paramètres polarimétrique en bande C et L est proposé pour le suivi de l’hydrologie des tourbières (chap. 15 et 16). Les analyses de sensibilité montrent que les paramètres de la 1re composante, relatifs à la portion dominante (polarisée) du signal, sont suffisants pour une caractérisation générale des physionomies végétales. Les paramètres des 2e et 3e composantes sont cependant nécessaires pour obtenir de meilleures séparabilités entre les classes (chap. 11 et 13) et une meilleure discrimination entre milieux humides et milieux secs (chap. 14). Cette thèse montre qu’il est préférable de considérer individuellement les paramètres des 1re, 2e et 3e composantes plutôt que leur somme pondérée par leurs valeurs propres respectives (chap. 10 et 12). Cette thèse examine également la complémentarité entre les paramètres de structure et ceux relatifs à la puissance rétrodiffusée, souvent ignorée et normalisée par la plupart des décompositions polarimétriques. La dimension temporelle (saisonnière) est essentielle pour la caractérisation et la classification des physionomies végétales (chap. 12, 13 et 14). Des images acquises au printemps (avril et mai) sont nécessaires pour discriminer les milieux secs des milieux humides alors que des images acquises en été (juillet et août) sont nécessaires pour raffiner la classification des physionomies végétales. Un arbre hiérarchique de classification développé dans cette thèse constitue une synthèse des connaissances acquises (chap. 14). À l’aide d’un nombre relativement réduit de paramètres polarimétriques et de règles de décisions simples, il est possible d’identifier, entre autres, trois classes de bas marais et de discriminer avec succès les hauts marais herbacés des autres classes physionomiques sans avoir recours à des sources de données auxiliaires. Les résultats obtenus sont comparables à ceux provenant d’une classification supervisée utilisant deux images Landsat-5 avec une exactitude globale de 77.3% et 79.0% respectivement. Diverses classifications utilisant la machine à vecteurs de support (SVM) permettent de reproduire les résultats obtenus avec l’arbre hiérarchique de classification. L’exploitation d’une plus forte dimensionalitée par le SVM, avec une précision globale maximale de 79.1%, ne permet cependant pas d’obtenir des résultats significativement meilleurs. Finalement, la phase de la décomposition de Touzi apparaît être le seul paramètre (en bande L) sensible aux variations du niveau d’eau sous la surface des tourbières ouvertes (chap. 16). Ce paramètre offre donc un grand potentiel pour le suivi de l’hydrologie des tourbières comparativement à la différence de phase entre les canaux HH et VV. Cette thèse démontre que les paramètres de la décomposition de Touzi permettent une meilleure caractérisation, de meilleures séparabilités et de meilleures classifications des physionomies végétales des milieux humides que les canaux de polarisation HH, HV et VV. Le regroupement des espèces végétales en classes physionomiques est un concept valable. Mais certaines espèces végétales partageant une physionomie similaire, mais occupant un milieu différent (haut vs bas marais), ont cependant présenté des différences significatives quant aux propriétés de leur rétrodiffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tribune de l'éditeur / Editor's Soapbox

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expectations of the patient. In this paper, we propose to use least squares support vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction with the support vector machine are compared. The methods are evaluated in terms of their accuracy, based on the leave-one-out cross-validation performed on a database of 141 cases. The results indicate that the 3D shape predictions using a dimensionality reduction obtained by simultaneous decomposition of the predictors and response variables have the best accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabilities. By finding the relationship between these attributes, the redundant attributes can be eliminated and core attributes determined. Also, rule mining is performed in rough sets using the algorithm LEM1. The prediction of LD is accurately done by using Rosetta, the rough set tool kit for analysis of data. The result obtained from this study is compared with the output of a similar study conducted by us using Support Vector Machine (SVM) with Sequential Minimal Optimisation (SMO) algorithm. It is found that, using the concepts of reduct and global covering, we can easily predict the learning disabilities in children

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a handwritten character recognition system for Malayalam language. The feature extraction phase consists of gradient and curvature calculation and dimensionality reduction using Principal Component Analysis. Directional information from the arc tangent of gradient is used as gradient feature. Strength of gradient in curvature direction is used as the curvature feature. The proposed system uses a combination of gradient and curvature feature in reduced dimension as the feature vector. For classification, discriminative power of Support Vector Machine (SVM) is evaluated. The results reveal that SVM with Radial Basis Function (RBF) kernel yield the best performance with 96.28% and 97.96% of accuracy in two different datasets. This is the highest accuracy ever reported on these datasets

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases