976 resultados para Wave Equation Violin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear amplitude equation, which was derived by Jian Yongjun employing expansion of two-time scales in inviscid fluids in a vertically oscillating circular cylindrical vessel, is modified by introducing a damping term due to the viscous dissipation of this system. Instability of the surface wave is analysed and properties of the solutions of the modified equation are determined together with phase-plane trajectories. A necessary condition of forming a stable surface wave is obtained and unstable regions are illustrated. Research results show that the stable pattern of surface wave will not lose its stability to an infinitesimal disturbance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-time scale perturbation expansions were developed in weakly viscous fluids to investigate surface wave motions by linearizing the Navier-Stokes equation in a circular cylindrical vessel which is subject to a vertical oscillation. The fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates a damping term and external excitation, was derived for the weakly viscid fluids. The condition for the appearance of stable surface waves was obtained and the critical curve was determined. In addition, an analytical expression for the damping coefficient was determined and the relationship between damping and other related parameters (such as viscosity, forced amplitude, forced frequency and the depth of fluid, etc.) was presented. Finally, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal stress wave and spallation in aluminium alloy exposed to a high fluency and low energy electron beams are studied theoretically. A simple model for the study of energy deposition of electrons in materials is presented on the basis of some empirical formulae. Under the stress wave induced by energy deposition, microcracks and/or microvoids may appear in target materials, and in this case, the inelastic volume deformation should not vanish. The viscoplastic model proposed by Bodner and Partom with corresponding Gurson's yield function requires modification for this situation. The new constitutive model contains a scalar field variable description of the material damage which is taken as the void volume fraction of the polycrystalline material. Incorporation of the damage parameter permits description of rate-dependent, compressible, inelastic deformation and ductile fracture. The melting phenomenon has been observed in the experiment, therefore one needs to take into account the melting process in the intermediate energy deposition range. A three-phase equation of state used in the paper provides a more detailed and thermodynamical description of metals, particularly, in the melting region. The computational results based on the suggested model are compared with the experimental test for aluminium alloy, which is subjected to a pulsed electron beam with high fluency and low energy. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional transient wave response problem is presented for an infinite elastic medium weakened by a plane crack of infinite length and finite width. Tractions are applied suddenly to the crack, which simulates the case of impact loading. The integral transforms are utilized to reduce the problem to a standard Fredholm integral equation in the Laplace transform variable and sequentially invert the Laplace transforms of the stress components by numerical inversion method. The dynamic mode I stress intensity factors at the crack tip are obtained and some numerical results are presented in graphical form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effect of current on the evolution of a solitary wave is studied. The governing equation in the far field, KdV equation with variable coefficients, is derived. A solitary wave solution is obtained. The fission of a solitary wave is discussed, and the fissible region on the Q~h2-plane and the criterion of the number of the solitary waves after fission are found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The starting process of two-dimensional nozzle flows has been simulated with Euler, laminar and k - g two-equation turbulence Navier-Stokes equations. The flow solver is based on a combination of LUSGS subiteration implicit method and five spatial discretized schemes, which are Roe, HLLE, MHLLE upwind schemes and AUSM+, AUSMPW schemes. In the paper, special attention is for the flow differences of the nozzle starting process obtained from different governing equations and different schemes. Two nozzle flows, previously investigated experimentally and numerically by other researchers, are chosen as our examples. The calculated results indicate the carbuncle phenomenon and unphysical oscillations appear more or less near a wall or behind strong shock wave except using HLLE scheme, and these unphysical phenomena become more seriously with the increase of Mach number. Comparing the turbulence calculation, inviscid solution cannot simulate the wall flow separation and the laminar solution shows some different flow characteristics in the regions of flow separation and near wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morison's equation is used for estimating internal solitary wave-induced forces exerted on SPAR and semi-submersible platforms. And the results we got have also been compared to ocean surface wave loading. It is shown that Morison's equation is an appropriate approach to estimate internal wave loading even for SPAR and semi-submersible platforms, and the internal solitary wave load on floating platforms is comparable to surface wave counterpart. Moreover, the effects of the layers with different thickness on internal solitary wave force are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because the Earth’s upper mantle is inaccessible to us, in order to understand the chemical and physical processes that occur in the Earth’s interior we must rely on both experimental work and computational modeling. This thesis addresses both of these geochemical methods. In the first chapter, I develop an internally consistent comprehensive molar volume model for spinels in the oxide system FeO-MgO-Fe2O3-Cr2O3-Al2O3-TiO2. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure. In the second chapter, I calibrate a molar volume model for cubic garnets in the system SiO2-Al2O3-TiO2-Fe2O3-Cr2O3-FeO-MnO-MgO-CaO-Na2O. I use the method of singular value analysis to calibrate excess volume of mixing parameters for the garnet model. The implications the model has for the density of the lithospheric mantle are explored. In the third chapter, I discuss the nuclear inelastic X-ray scattering (NRIXS) method, and present analysis of three orthopyroxene samples with different Fe contents. Longitudinal and shear wave velocities, elastic parameters, and other thermodynamic information are extracted from the raw NRIXS data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for determining by inspection the stability or instability of any solution u(t,x) = ɸ(x-ct) of any smooth equation of the form u_t = f(u_(xx),u_x,u where ∂/∂a f(a,b,c) > 0 for all arguments a,b,c, is developed. The connection between the mean wavespeed of solutions u(t,x) and their initial conditions u(0,x) is also explored. The mean wavespeed results and some of the stability results are then extended to include equations which contain integrals and also to include some special systems of equations. The results are applied to several physical examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.

We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.

We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.

Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.

Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.

In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equations of state (EOS) of several geologically important silicate liquids have been constrained via preheated shock wave techniques. Results on molten Fe2SiO4 (fayalite), Mg2SiO4 (forsterite), CaFeSi2O6 (hedenbergite), an equimolar mixture of CaAl2Si2O8-CaFeSi2O6 (anorthite-hedenbergite), and an equimolar mixture of CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6(anorthite-hedenbergite-diopside) are presented. This work represents the first ever direct EOS measurements of an iron-bearing liquid or of a forsterite liquid at pressures relevant to the deep Earth (> 135 GPa). Additionally, revised EOS for molten CaMgSi2O6 (diopside), CaAl2Si2O8 (anorthite), and MgSiO3 (enstatite), which were previously determined by shock wave methods, are also presented.

The liquid EOS are incorporated into a model, which employs linear mixing of volumes to determine the density of compositionally intermediate liquids in the CaO-MgO-Al2O3-SiO2-FeO major element space. Liquid volumes are calculated for temperature and pressure conditions that are currently present at the core-mantle boundary or that may have occurred during differentiation of a fully molten mantle magma ocean.

The most significant implications of our results include: (1) a magma ocean of either chondrite or peridotite composition is less dense than its first crystallizing solid, which is not conducive to the formation of a basal mantle magma ocean, (2) the ambient mantle cannot produce a partial melt and an equilibrium residue sufficiently dense to form an ultralow velocity zone mush, and (3) due to the compositional dependence of Fe2+ coordination, there is a threshold of Fe concentration (molar XFe ≤ 0.06) permitted in a liquid for which its density can still be approximated by linear mixing of end-member volumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear X-wave formation at different pulse powers in water is simulated using the standard model of nonlinear Schrodinger equation (NLSE). It is shown that in near field X-shape originally emerges from the interplay between radial diffraction and optical Kerr effect. At relatively low power group-velocity dispersion (GVD) arrests the collapse and leads to pulse splitting on axis. With high enough power, multi-photon ionization (NIPI) and multi-photon absorption (MPA) play great importance in arresting the collapse. The tailing part of pulse is first defocused by MPI and then refocuses. Pulse splitting on axis is a manifestation of this process. Double X-wave forms when the split sub-pulses are self-focusing. In the far field, the character of the central X structure of conical emission (CE) is directly related to the single or double X-shape in the near field. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(1) Equation of State of Komatiite

The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, US, and particle velocity, UP, in km/s follow the linear relationship US = 3.13(±0.03) + 1.47(±0.03) UP. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this US-UP relationship gives the isentropic bulk modulus KS = 27.0 ± 0.6 GPa, and its first and second isentropic pressure derivatives, K'S = 4.9 ± 0.1 and K"S = -0.109 ± 0.003 GPa-1.

The calculated liquidus compression curve agrees within error with the static compression results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (FO94) will be neutrally buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this komatiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite may be neutrally buoyant near 70 GPa.

At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal to the calculated density of an equivalent mixture of dense solid oxide components. This observation supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk (PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from ascending from depths greater than 400 km.

The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated by adiabatic melting come from source regions in the lower transition zone (≈500-670 km) or the lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hindered. Although komatiitic magmas are thought to separate from their coexisting crystals at a temperature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter than the sources of MORBs and derived from great depth.

We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model considers the thermal structure of the magma ocean, density constraints on crystal segregation, and approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this septum must be permeable.

(2) Viscosity Measurement with Shock Waves

We have examined in detail the analytical method for measuring shear viscosity from the decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions are discussed. The validity of the viscous perturbation approach is examined by numerically solving the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabilities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimental results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity determined by this method may reflect the existence of ice VII on the Rayleigh path of the Hugoniot This interpretation reconciles the experimental results with estimates and measurements obtained by other means, and is consistent with the relationship of the Hugoniot with the phase diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. The existence of anelastic absorption modes near this frequency would also lead to large effective viscosity estimates.

(3) Equation of State of Molybdenum at 1400°C

Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, K'S. of 244±2 GPa and its pressure derivative, K'OS of 4. A fit of shock velocity to particle velocity gives the coefficients of US = CO+S UP to be CO = 4.77±0.06 km/s and S = 1.43±0.05. From the zero pressure sound speed, CO, a bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity measurements. The temperature derivative of the bulk modulus at zero pressure, θKOSθT|P, is approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic Grüneisen parameter is proportional to the density and independent of temperature. The Mie-Grüneisen equation of state adequately describes the high temperature behavior of molybdenum under the present range of shock loading conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental studies were conducted to investigate the wave induced oscillations in an arbitrary shaped harbor with constant depth which is connected to the open-sea.

A theory termed the “arbitrary shaped harbor” theory is developed. The solution of the Helmholtz equation, ∇2f + k2f = 0, is formulated as an integral equation; an approximate method is employed to solve the integral equation by converting it to a matrix equation. The final solution is obtained by equating, at the harbor entrance, the wave amplitude and its normal derivative obtained from the solutions for the regions outside and inside the harbor.

Two special theories called the circular harbor theory and the rectangular harbor theory are also developed. The coordinates inside a circular and a rectangular harbor are separable; therefore, the solution for the region inside these harbors is obtained by the method of separation of variables. For the solution in the open-sea region, the same method is used as that employed for the arbitrary shaped harbor theory. The final solution is also obtained by a matching procedure similar to that used for the arbitrary shaped harbor theory. These two special theories provide a useful analytical check on the arbitrary shaped harbor theory.

Experiments were conducted to verify the theories in a wave basin 15 ft wide by 31 ft long with an effective system of wave energy dissipators mounted along the boundary to simulate the open-sea condition.

Four harbors were investigated theoretically and experimentally: circular harbors with a 10° opening and a 60° opening, a rectangular harbor, and a model of the East and West Basins of Long Beach Harbor located in Long Beach, California.

Theoretical solutions for these four harbors using the arbitrary shaped harbor theory were obtained. In addition, the theoretical solutions for the circular harbors and the rectangular harbor using the two special theories were also obtained. In each case, the theories have proven to agree well with the experimental data.

It is found that: (1) the resonant frequencies for a specific harbor are predicted correctly by the theory, although the amplification factors at resonance are somewhat larger than those found experimentally,(2) for the circular harbors, as the width of the harbor entrance increases, the amplification at resonance decreases, but the wave number bandwidth at resonance increases, (3) each peak in the curve of entrance velocity vs incident wave period corresponds to a distinct mode of resonant oscillation inside the harbor, thus the velocity at the harbor entrance appears to be a good indicator for resonance in harbors of complicated shape, (4) the results show that the present theory can be applied with confidence to prototype harbors with relatively uniform depth and reflective interior boundaries.