914 resultados para Water treatment plants.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of industry and domestic effluents in wastewater treatment plants reduces the amount of polluted material and forms reusable water and dehydrated sludge. the generation of hazardous municipal sludge can be decreased, as well as the impact on surface and underground water and the risk to human health. The aim this study is to verify the possibility to use sintered sewage sludge as support material after thermal treatment in the production of a filtering material to water supply systems. After thermal treatment the sewage sludge ash was characterized by X-ray fluorescence (XRF), leaching test and water solubilization. Dehydration of sludge was performed by controlled heating at temperatures of 180 degrees C, 350 degrees C, 600 degrees C, 850 degrees C and 1000 degrees C for 3 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. on the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two projects of water treatment for public water supply were developed and operated by using combined systems of constructed wetlands. One of the projects was carried out in the town of Analandia, Sao Paulo, Brazil and wetlands with floating aquatic plants associated to the HDS system were used. Nearly 6480 inhabitants were supplied. The other conducted project was an experimental station in partnership with SABESP (Sao Paulo State Sanitation Agency/Brazil), for the pretreatment of 1700 l.s-1 of waters from the Cotia River, which is used for the population's supply after conventional treatment at the Lower Cotia Water Treatment Station. For this pilot project, wetlands with emergents and floating plants associated to the HDS system were used. The proposed objectives were achieved in both projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil - Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s-1 has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The waters of Corumbataí River in the middle and eastern part of São Paulo State, Brazil, are extensively used for human consumption; their water quality has been modified mainly due to increasing pressure caused by population growth, accompanied by a more accentuated industrial development for the whole São Paulo State in the early 1970s. The Corumbataí River basin has, over time, received significant emissions of municipal waste products and discharges of wastewater, sludge, sewage, sanitary and industrial effluents, but the first effluent treatment plant at Rio Claro city was only inaugurated at the end of the 1990s. Data on river water quality from two widely spaced locations in the Corumbataí River basin are reported in this paper; they indicate the need for continuous initiatives and efforts by decision makers in order to improve and preserve the water quality in the basin for the 21st century. Copyright © 2007 IAHS Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MT Hard Water of Montana Tech of the University of Montana submits Task 3: Treatment Technology Validation for Water Softening Technology as an entry into the 2012 WERC Environmental Design Contest. Currently, there are several commercially available technologies that treat water hardness. The objective of this project is to develop a strategy to evaluate and validate different water hardness treatment technologies. MT Hard Water (MTHW) has studied several technologies including: electromagnetic water treatment, ion exchange, and reverse osmosis. For validation purposes, an electromagnetic water treatment system (ScaleRID) was selected according to the WERC task description.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibiotics are emerging contaminants worldwide. Due to insufficient policy regulations, public awareness, and the constant exposure of the environment to antibiotic sources has created a major environmental concern. Wastewater treatment plants (WWTP) are not equipped to filter-out these compounds before the discharge of the disinfected effluent into water sources (e.g., lakes and streams) and current available technologies are not equipped to remediate these compounds from environmental sources. Hence, the challenge remains to establish a biological system to remove these antibiotics from wastewater. An invitro hydroponic remediation system was developed using vetiver grass (Chrysopogon zizanioides L. Nash) to remediate tetracycline (TC) from water. Comparative metabolomics studies were conducted to investigate the metabolites/pathways associated with tetracycline metabolism in plants and TC-degrading bacteria. The results show that vetiver plants effectively uptake tetracycline from water sources. Vetiver root-associated bacteria recovered during the hydroponic remediation trial were highly tolerant to TC (as high as 600 ppm) and could use TC as a sole carbon and energy source. Growth conditions (pH, temperature, and oxygen requirement) for TC-tolerant bacteria were optimized for higher TC remediation capability from water sources. The plant (roots and shoots) and bacterial species were further characterized for the metabolites produced during the TC degradation process using GC-MS to identify the possible biochemical mechanism involved. Also, the plant root zone was screened for metabolites/enzymes that were secreted during antibiotic degradation and could potentially enhance the degradation process. The root zone was selected for this analysis because this region of the plant has shown a greater capacity for antibiotic degradation compared to the shoot zone. The role of antioxidant enzymes in TC degradation process revealed glutathione-S-transferase (GSTs) as an important group of enzymes in both plant and bacteria potentially involved in TC degradation process. Metabolomics results also suggest potential GST activity in the TC remediation/ transformation process used by plants. This information could be useful in gaining insights for the application of biological remediation systems for the mitigation of antibiotics from waste-water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UV filters belong to a group of compounds that are used by humans and are present in municipal waste-waters, effluents from sewage treatment plants and surface waters. Current information regarding UV filters and their effects on fish is limited. In this study, the occurrence of three commonly used UV filters - 2-phenylbenzimidazole-5-sulfonic acid (PBSA), 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) and 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (benzophenone-4, BP-4) - in South Bohemia (Czech Republic) surface waters is presented. PBSA concentrations (up to 13μgL(-1)) were significantly greater than BP-3 or BP-4 concentrations (up to 620 and 390ngL(-1), respectively). On the basis of these results, PBSA was selected for use in a toxicity test utilizing the common model organism rainbow trout (Oncorhynchus mykiss). Fish were exposed to three concentrations of PBSA (1, 10 and 1000µgL(-1)) for 21 and 42 days. The PBSA concentrations in the fish plasma, liver and kidneys were elevated after 21 and 42 days of exposure. PBSA increased activity of certain P450 cytochromes. Exposure to PBSA also changed various biochemical parameters and enzyme activities in the fish plasma. However, no pathological changes were obvious in the liver or gonads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical plant strengtheners find increasing use in agriculture to enhance resistance against pathogens. In an earlier study, it was found that treatment with one such resistance elicitor, BTH (benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester), increases the attractiveness of maize plants to a parasitic wasp. This surprising additional benefit of treating plants with BTH prompted us to conduct a series of olfactometer tests to find out if BTH and another commercially available plant strengthener, Laminarin, increase the attractiveness of maize to three important parasitic wasps, Cotesia marginventris, Campoletis sonorensis, and Microplitis rufiventris. In each case, plants that were sprayed with the plant strengtheners and subsequently induced to release volatiles by real or mimicked attack by Spodoptera littoralis caterpillars became more attractive to the parasitoids than water treated plants. The elicitors alone or in combination with plants that were not induced by herbivory were not attractive to the wasps. Interestingly, plants treated with the plant strengtheners did not show any consistent increase in volatile emissions. On the contrary, treated plants released less herbivore-induced volatiles, most notably indole, which has been reported to interfere with parasitoid attraction. The emission of the sesquiterpenes (E)-β-caryophyllene, β-bergamotene, and (E)-β-farnesene was similarly reduced by the treatment. Expression profiles of marker genes showed that BTH and Laminarin induced several pathogenesis related (PR) genes. The results support the notion that, as yet undetectable and unidentified compounds, are of major importance for parasitoid attraction, and that these attractants may be masked by some of the major compounds in the volatile blends. This study confirms that elicitors of pathogen resistance are compatible with the biological control of insect pests and may even help to improve it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of waste pharmaceuticals has been identified and well documented in water sources throughout North America and Europe. Many studies have been conducted which identify the occurrence of various pharmaceutical compounds in these waters. This project is an extensive review of the documented evidence of this occurrence published in the scientific literature. This review was performed to determine if this occurrence has a significant impact on the environment and public health. This project and review found that pharmaceuticals such as sex hormone drugs, antibiotic drugs and antineoplastic/cytostatic agents as well as their metabolites have been found to occur in water sources throughout the United States at levels high enough to have noticeable impacts on human health and the environment. It was determined that the primary sources of this occurrence of pharmaceuticals were waste water effluent and solid wastes from sewage treatment plants, pharmaceutical manufacturing plants, healthcare and biomedical research facilities, as well as runoff from veterinary medicine applications (including aquaculture). ^ In addition, current public policies of US governmental agencies such as the Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and Drug Enforcement Agency (DEA) have been evaluated to see if they are doing a sufficient job at controlling this issue. Specific recommendations for developing these EPA, FDA, and DEA policies have been made to mitigate, prevent, or eliminate this issue.^ Other possible interventions such as implementing engineering controls were also evaluated in order to mitigate, prevent and eliminate this issue. These engineering controls include implementing improved current treatment technologies such as the advancement and improvement of waste water treatment processes utilized by conventional sewage treatment and pharmaceutical manufacturing plants. In addition, administrative controls such as the use of “green chemistry” in drug synthesis and design were also explored and evaluated as possible alternatives to mitigate, prevent, or eliminate this issue. Specific recommendations for incorporating these engineering and administrative controls into the applicable EPA, FDA, and DEA policies have also been made.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of acid secretion in regulating short-term changes in growth rate and wall extensibility was investigated in emerging first leaves of intact, water-stressed maize (Zea mays L.) seedlings. A novel approach was used to measure leaf responses to injection of water or solutions containing potential regulators of growth. Both leaf elongation and wall extensibility, as measured with a whole-plant creep extensiometer, increased dramatically within minutes of injecting water, 0.5 mm phosphate, or strong (50 mm) buffer solutions with pH ≤ 5.0 into the cell-elongation zone of water-stressed leaves. In contrast, injecting buffer solutions at pH ≥ 5.5 inhibited these fast responses. Solutions containing 0.5 mm orthovanadate or erythrosin B to inhibit wall acidification by plasma membrane H+-ATPases were also inhibitory. Thus, cell wall extensibility and leaf growth in water-stressed plants remained inhibited, despite the increased availability of (injected) water when accompanying increases in acid-induced wall loosening were prevented. However, growth was stimulated when pH 4.5 buffers were included with the vanadate injections. These findings suggest that increasing the availability of water to expanding cells in water-stressed leaves signals rapid increases in outward proton pumping by plasma membrane H+-ATPases. Resultant increases in cell wall extensibility participate in the regulation of water uptake, cell expansion, and leaf growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water quantity and quality issues worldwide are causing nations to consider alternate sources for drinking water. Desalination and other membrane processes for treatment of seawater and brackish inland waters have been in use for the past quarter century and are growing in use worldwide. These treatment processes create a highly concentrated waste stream in which the principal constituents are dissolved solids. This report provides an overview of desalination methods and the methods available to dispose of this waste stream. Innovative technologies being studied for possible future use are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of all the costs associated with the operation and maintenance of wastewater treatment plants (WWTPs), those associated with energy use tend to be the most significant. From this point of view, it is hence logical that energy efficiency and saving strategies should be one of the current focuses of debate amongst those involved with the management of WWTPs. The present study's objective is to determine the correlation between size and energy consumption for a WWTP. To this end, 90 WWTPs currently in service were analysed and their energetic impact quantified in terms of kWh/m3 of water treated. The results obtained demonstrate that energy consumption ratio increases as the size of WWTPs decreases, either in terms of treatment volume or population equivalent served.