981 resultados para Water basin
Resumo:
The consideration of the streamflow seasonality has a high potential to improve the water use. In order to give subsidies to the optimization of water use, it was evaluated the impact of the change of reference annual streamflow by the monthly streamflows in the potential water use throughout the hydrography of Paracatu sub-Basin. It was evaluated the impact on Q7,10 (lowest average streamflow during a 7-day period with an average recurrence of 10 years) and on Q95 (permanent flow present 95% of the time). The use of monthly streamflow to substitute the annual streamflow had a high potential of improvement of water resources use in the sub-Basin studied. The use of monthly Q 7,10 in substitution of annual Q 7,10 increases the potential water use that vary from about 10% in the months of lower water availability to values exceeding 200% in the months with higher availability of surface water resources. The use of monthly Q95 in substitution of the annual Q95 implies in changes oscillating from reduction of 37% in months of higher water restriction to values exceeding 100% in the months of higher availability, so the use of monthly Q95 instead of the annual Q95 enables the more rational and safe use of water resources.
Resumo:
Hydrological models are important tools that have been used in water resource planning and management. Thus, the aim of this work was to calibrate and validate in a daily time scale, the SWAT model (Soil and Water Assessment Tool) to the watershed of the Galo creek , located in Espírito Santo State. To conduct the study we used georeferenced maps of relief, soil type and use, in addition to historical daily time series of basin climate and flow. In modeling were used time series corresponding to the periods Jan 1, 1995 to Dec 31, 2000 and Jan 1, 2001 to Dec 20, 2003 for calibration and validation, respectively. Model performance evaluation was done using the Nash-Sutcliffe coefficient (E NS) and the percentage of bias (P BIAS). SWAT evaluation was also done in the simulation of the following hydrological variables: maximum and minimum annual daily flowsand minimum reference flows, Q90 and Q95, based on mean absolute error. E NS and P BIAS were, respectively, 0.65 and 7.2% and 0.70 and 14.1%, for calibration and validation, indicating a satisfactory performance for the model. SWAT adequately simulated minimum annual daily flow and the reference flows, Q90 and Q95; it was not suitable in the simulation of maximum annual daily flows.
Resumo:
This thesis includes detailed sedimentological and ichnological studies on two geological units: the Pebas Formation, with a special focus in its informal upper member, and the Nauta Formation. Both formations were deposited during the Miocene in Northeastern Peruvian Amazonia, in the Amazon retroarc foreland basin. The Pebas and Nauta successions mainly consist of non-consolidated, clastic sedimentary deposits arranged into sand- to mud-dominated heterolithic successions, which can be upward-coarsening to upward-fining. Sediments in both the Pebas and Nauta successions range from mud to fine- to medium-grained sand. The main facies observed were 1) mud-dominated horizontal heterolithic couplets; 2) rooted brownish mud; 3) lenticular, mud-draped, cross-stratified sand; 4) mud- to sand-dominated, inclined heterolithic stratification; 5) sand-dominated horizontal heterolithic couplets; and 6) mud-draped, trough cross-stratified sand. Locally, tidal rhythmites were documented. The facies are interpreted as: 1) muddy, shallow, subaqueous flats/shoals; 2) palaeosols; 3) secondary tidal channels or run-off creeks; 4) tidally influenced point bars; 5) shoreface deposits; and 6) subtidal compound dunes. Thalassinoides-dominated Glossifungites ichnofacies, low-diversity expressions of the Skolithos ichnofacies and depauperate suites consisting of elements common to the Cruziana ichnofacies strongly indicate brackish-water conditions. However, continental trace fossil assemblages, with possible elements common to the Scoyenia ichnofacies, have also been identified. In addition to the palaeoenvironmental study, a local hydrogeochemical characterisation of the Pebas and Nauta formations was also conducted. The geochemistry of the groundwaters reflects the characteristics and the soil geochemistry of the geological formations studied. The Pebas formation has low hardness, acid to neutral waters, whereas the upper Pebas has high hardness, acid to neutral waters. In both units, the arsenic content is locally high. The Nauta formation has low hardness acid groundwaters. A regional review of the Pebas and Nauta formations placed the local observations into a continental perspective and suggests that the whole Pebas-Nauta system was a probably shallow (some tens of metres at maximum), brackish- to freshwater, tidally-influenced epicontinental embayment with a probable semi-diurnal to mixed tidal regime and a microtidal range, surrounded by continental environments such as forest floors, lagoons, rivers and their flood plains, and lakes.
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation, and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the Programme when assessing the effects of the emissions from the Pechenganikel mining and metallurgical industry (Kola GMK). The Metallurgic Production Renovation Programme was implemented by OJSC Kola GMK to reduce emissions of sulphur and heavy metal concentrated dust. However, the expectations for the reduction in emissions from the smelter in the settlement Nikel were not realized. Nevertheless, Kola GMK has found that the modernization programme’s measures do not provide the planned reductions of sulfur dioxide emissions. In this report, temporal trends in water chemistry during 2000–2009 are examined on the basis of the data gathered from Lake Inari, River Pasvik and directly connected lakes, as well as from 26 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse, and the small lakes and streams which are not directly linked to the Pasvik watercourse, only receive atmospheric pollution. The data obtained confirms the ongoing pollution of the river and water system. Copper (Cu), nickel (Ni) and sulphates are the main pollution components. The highest levels were observed close to the smelters. The most polluted water source of the basin is the River Kolosjoki, as it directly receives the sewage discharge from the smelters and the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentrations of metals and sulphates in the River Pasvik are higher downstream from the Kuetsjarvi Lake. There has been no fall in the concentrations of pollutants in Pasvik watercourse over the last 10 years. Ongoing recovery from acidification has been evident in the small lakes of the Jarfjord and Vätsäri areas during the 2000s. The buffering capacity of these lakes has improved and the pH has increased. The reason for this recovery is that sulphate deposition has decreased, which is also evident in the water quality. However, concentrations of some metals, especially Ni and Cu, have risen during the 2000s. Ni concentrations have increased in all three areas, and Cu concentrations in the Pechenganickel and Jarfjord areas, which are located closer to the smelters. Emission levels of Ni and Cu did not fall during 2000s. In fact, the emission levels of Ni compounds even increased compared to the 1990s.
Resumo:
Considering the great ecological and sanitary importance of the cyanobacteria and the need of detailed information about these organisms in Brazilian water bodies, the present study aims at contributing towards the knowledge of the cyanobacterial flora of five reservoirs belonging to the upper Tietê Basin, São Paulo: Billings, Guarapiranga, Jundiaí, Pirapora, Ponte Nova and Taiaçupeba. In the past several years, these reservoirs have been submitted to severe environmental deterioration and have repeatedly presented cyanobacterial blooms, including those of toxic species. The samples were collected between 1997 and 2003 either with plankton net (20 µm mesh) or van Dorn's bottle, and preserved with lugol solution or formaldehyde. Some species were isolated and maintained in culture. Forty-eight species of cyanobacteria were identified, with predominance of the order Chroococcales (58%), followed by the orders Oscillatoriales (21%) and Nostocales (21%). Among the 48 studied species, 17 (35%) were considered potentially toxic. The occurrence and biodiversity of the cyanobacteria in each reservoir depend on the environmental conditions. Among the five water bodies, Billings Reservoir presented the most adequate situation for the development of a greater number of species (34), probably due to its high pH values (around 8). Pirapora Reservoir on the other hand, with highest conductivity (445.0 µS cm-1) and lowest Secchi depth values (0.2 m), presented the lowest cyanobacterial biodiversity (14 species).
Resumo:
Water geochemistry is a very important tool for studying the water quality in a given area. Geology and climate are the major natural factors controlling the chemistry of most natural waters. Anthropogenic impacts are the secondary sources of contamination in natural waters. This study presents the first integrative approach to the geochemistry and water quality of surface waters and Lake Qarun in the Fayoum catchment, Egypt. Moreover, geochemical modeling of Lake Qarun was firstly presented. The Nile River is the main source of water to the Fayoum watershed. To investigate the quality and geochemistry of this water, water samples from irrigation canals, drains and Lake Qarun were collected during the period 2010‒2013 from the whole Fayoum drainage basin to address the major processes and factors governing the evolution of water chemistry in the investigation area. About 34 physicochemical quality parameters, including major ions, oxygen isotopes, trace elements, nutrients and microbiological parameters were investigated in the water samples. Multivariable statistical analysis was used to interpret the interrelationship between the different studied parameters. Geochemical modeling of Lake Qarun was carried out using Hardie and Eugster’s evolutionary model and a model simulated by PHREEQC software. The crystallization sequence during evaporation of Lake Qarun brine was also studied using a Jänecke phase diagram involving the system Na‒K‒Mg‒ Cl‒SO4‒H2O. The results show that the chemistry of surface water in the Fayoum catchment evolves from Ca- Mg-HCO3 at the head waters to Ca‒Mg‒Cl‒SO4 and eventually to Na‒Cl downstream and at Lake Qarun. The main processes behind the high levels of Na, SO4 and Cl in downstream waters and in Lake Qarun are dissolution of evaporites from Fayoum soils followed by evapoconcentration. This was confirmed by binary plots between the different ions, Piper plot, Gibb’s plot and δ18O results. The modeled data proved that Lake Qarun brine evolves from drainage waters via an evaporation‒crystallization process. Through the precipitation of calcite and gypsum, the solution should reach the final composition "Na–Mg–SO4–Cl". As simulated by PHREEQC, further evaporation of lake brine can drive halite to precipitate in the final stages of evaporation. Significantly, the crystallization sequence during evaporation of the lake brine at the concentration ponds of the Egyptian Salts and Minerals Company (EMISAL) reflected the findings from both Hardie and Eugster’s evolutionary model and the PHREEQC simulated model. After crystallization of halite at the EMISAL ponds, the crystallization sequence during evaporation of the residual brine (bittern) was investigated using a Jänecke phase diagram at 35 °C. This diagram was more useful than PHREEQC for predicting the evaporation path especially in the case of this highly concentrated brine (bittern). The predicted crystallization path using a Jänecke phase diagram at 35 °C showed that halite, hexahydrite, kainite and kieserite should appear during bittern evaporation. Yet the actual crystallized mineral salts were only halite and hexahydrite. The absence of kainite was due to its metastability while the absence of kieserite was due to opposed relative humidity. The presence of a specific MgSO4.nH2O phase in ancient evaporite deposits can be used as a paleoclimatic indicator. Evaluation of surface water quality for agricultural purposes shows that some irrigation waters and all drainage waters have high salinities and therefore cannot be used for irrigation. Waters from irrigation canals used as a drinking water supply show higher concentrations of Al and suffer from high levels of total coliform (TC), fecal coliform (FC) and fecal streptococcus (FS). These waters cannot be used for drinking or agricultural purposes without treatment, because of their high health risk. Therefore it is crucial that environmental protection agencies and the media increase public awareness of this issue, especially in rural areas.
Resumo:
The rock sequence of the Tertiary Beda Formation of S. W. concession 59 and 59F block in Sirte Basin of Libya has been subdivided into twelve platformal carbonate microfacies. These microfacies are dominated by muddy carbonates, such as skeletal mudstones, wackestones, and packstones with dolomites and anhydrite. Rock textures, faunal assemblages and sedimentary structures suggest shallow, clear, warm waters and low to moderate energy conditions within the depositional shelf environment. The Beda Formation represents a shallowing-upward sequence typical of lagoonal and tidal flat environments marked at the top by sabkha and brackish-water sediments. Microfossils include benthonic foraminifera, such as miliolids, Nummulites, - oerculina and other smaller benthonics, in addition to dasycladacean algae, ostracods, molluscs, echinoderms, bryozoans and charophytes. Fecal pellets and pelloids, along with the biotic allochems, contributed greatly to the composition of the various microfacies. Dolomite, where present, is finely crystalline and an early replacement product. Anhydrite occurs as nodular, chickenwire and massive textures indicating supratidal sabkha deposition. Compaction, micr it i zat ion , dolomit izat ion , recrystallization, cementation, and dissolution resulted in alteration and obliteration of primary sedimentary structures of the Beda Formation microfacies. The study area is located in the Gerad Trough which developed as a NE-SW trending extensional graben. The Gerad trough was characterized by deep-shallow water conditions throughout the deposition of the Beda Formation sediments. The study area is marked by several horsts and grabens; as a result of extent ional tectonism. The area was tectonically active throughout the Tertiary period. Primary porosity is intergranular and intragranular, and secondary processes are characterized by dissolution, intercrystalline, fracture and fenestral features. Diagenesis, through solution leaching and dolomitization, contributed greatly to porosity development. Reservoir traps of the Beda Formation are characterized by normal fault blocks and the general reservoir characteristics/properties appear to be facies controlled.
Resumo:
Various lake phases have developed in the upper Great Lakes in response to isostatic adjustment and changes in water supply since the retreat of the Laurentide Ice Sheet. Georgian Bay experienced a lowstand that caused a basin wide unconformity approximately 7,500 years ago that cannot be explained by geological events. Thecamoebians are shelled protozoans abundant in freshwater environments and they are generally more sensitive to changing environmental conditions than the surrounding vegetation. Thecamoebians can be used to reconstruct the paleolimnology. The abundance of thecamoebians belonging to the genus Centropyxis, which are known to tolerate slightly brackish conditions (i.e. high concentrations of ions) records highly evaporative conditions in a closed basin. During the warmer interval (9000 to 700 yBP), the Centropyxis - dominated population diminishes and is replaced by an abundant and diverse Difflugia dominate population. Historical climate records from Tobermory and Midland, Ontario were correlated with the Lake Huron water level curve. The fossil pollen record and comparison with modem analogues allowed a paleo-water budget to be calculated for Georgian Bay. Transfer function analysis of fossil pollen data from Georgian Bay records cold, dry winters similar to modem day Minneapolis, Minnesota. Drier climates around this time are also recorded in bog environments in Southem Ontario - the drying of Lake Tonawanda and inception of paludification in Willoughby Bog, for instance, dates around 7,000 years ago. The dramatic impact of climate change on the water level in Georgian Bay underlines the importance of paleoclimatic research for predicting future environmental change in the Great Lakes.
Resumo:
The present investigation on the Muvattupuzha river basin is an integrated approach based on hydrogeological, geophysical, hydrogeochemical parameters and the results are interpreted using satellite data. GIS also been used to combine the various spatial and non-spatial data. The salient finding of the present study are accounted below to provide a holistic picture on the groundwaters of the Muvattupuzha river basin. In the Muvattupuzha river basin the groundwaters are drawn from the weathered and fractured zones. The groundwater level fluctuations of the basin from 1992 to 2001 reveal that the water level varies between a minimum of 0.003 m and a maximum of 3.45 m. The groundwater fluctuation is affected by rainfall. Various aquifer parameters like transmissivity, storage coefficient, optimum yield, time for full recovery and specific capacity indices are analyzed. The depth to the bedrock of the basin varies widely from 1.5 to 17 mbgl. A ground water prospective map of phreatic aquifer has been prepared based on thickness of the weathered zone and low resistivity values (<500 ohm-m) and accordingly the basin is classified in three phreatic potential zones as good, moderate and poor. The groundwater of the Muvattupuzha river basin, the pH value ranges from 5.5 to 8.1, in acidic nature. Hydrochemical facies diagram reveals that most of the samples in both the seasons fall in mixing and dissolution facies and a few in static and dynamic natures. Further study is needed on impact of dykes on the occurrence and movement of groundwater, impact of seapages from irrigation canals on the groundwater quality and resources of this basin, and influence of inter-basin transfer of surface water on groundwater.
Resumo:
Dept.of Marine Geology & Geophysics, Cochin University of Sceince and Technology
Resumo:
The present investigation on " Hydrology, stratigraphy, and evolution of the palaeo-lagoon (Koleland basin)in the Central Kerala coast, India" is an integrated approach based on hydrogeological,geophysical,hydrochemical and stratigraphic aspects.A strong scientific data base of the study area is generated using interpretation of well observation and water quality analysis. The salient findings of the present study are given to provide a holistic picture on the hydrogeology (including groundwater resource and its quality),stratigraphy and evolution of the palaeo-lagoon
Resumo:
The present work deals with the An integrated study on the hydrogeology of Bharathapuzha river basin ,south west coast of india. To study the spatial and temporal behaviour of the groundwater system of the Bharathapuzha river basin.To discover the sub-surface parameter by ground resistivity surveys.T o determine the groundwater quality of the Bharathapuzha river basin for the different seasons {pre monsoon and post monsoon with reference to the domestic and irrigational water quality standards.Present study will provide a good database on the hydrogeological aspects within the river basin.The study area covers l7 block Panchayats. Of these, Chitoor block is ‘over exploited’, Kollengode, Trithala, and Palakkad are ‘critical’ in category and Kuttippuram and Sreekrishnapuram blocks are ‘semi critical’ in terms of groundwater development.Comparison of Geomorphology map with drainage map shows that the geomorphology has a clear control on the drainage net work of the basin. The structural hill area shows a highest drainage network, where as pediment shows lowest drainage network.There are many discontinuous lineament in the Bharathapuzha river basin which can be connected by a straight line.Ground water flow directions are generally towards the western portions of the study area. From the northern region Water flows towards the central and also water from the eastern and southern side confluences at the centre and move towards western side of the basin.The positive correlation of transmissivity and storativity values show good aquifer conditions exists in the present study area .
Resumo:
The Kerala Water Authority requested the School of Environmental Studies to carry out investigations on the mechanism of sporadic mobilization of iron and odour in the raw water drawn to the drinking water treatment plant. The currently used treatment process failed to remove iron completely. This led to problems in the filter and complaints of taste and colour due to iron in the finished water. The sporadic nature of the problem itself made the trouble shooting difficult. The problem was looked in from three points of view. 1. Influence of environmental (climatic) conditions on the dynamics of the relevant basin of the reservoir. 2. Influence of the physical dynamics on the physico — chemical quality of water. 3. Identification of cost-effective treatment processes to suit the existing plant. Since the problem emerged only during the post- monsoon to pre-monsoon months, a related problem was investigated, namely, influence of anions on the oxidation of Fe(II) in natural waters by air. This is presented in Part II of the dissertation.
Resumo:
This paper presents a preface to this Special Issue on the results of the QUEST-GSI (Global Scale Impacts) project on climate change impacts on catchment-scale water resources. A detailed description of the unified methodology, subsequently used in all studies in this issue, is provided. The project method involved running simulations of catchment-scale hydrology using a unified set of past and future climate scenarios, to enable a consistent analysis of the climate impacts around the globe. These scenarios include "policy-relevant" prescribed warming scenarios. This is followed by a synthesis of the key findings. Overall, the studies indicate that in most basins the models project substantial changes to river flow, beyond that observed in the historical record, but that in many cases there is considerable uncertainty in the magnitude and sign of the projected changes. The implications of this for adaptation activities are discussed.
Resumo:
This paper critically explores the politics that mediate the use of environmental science assessments as the basis of resource management policy. Drawing on recent literature in the political ecology tradition that has emphasised the politicised nature of the production and use of scientific knowledge in environmental management, the paper analyses a hydrological assessment in a small river basin in Chile, undertaken in response to concerns over the possible overexploitation of groundwater resources. The case study illustrates the limitations of an approach based predominantly on hydrogeological modelling to ascertain the effects of increased groundwater abstraction. In particular, it identifies the subjective ways in which the assessment was interpreted and used by the state water resources agency to underpin water allocation decisions in accordance with its own interests, and the role that a desocialised assessment played in reproducing unequal patterns of resource use and configuring uneven waterscapes. Nevertheless, as Chile’s ‘neoliberal’ political-economic framework privileges the role of science and technocracy, producing other forms of environmental knowledge to complement environmental science is likely to be contentious. In conclusion, the paper considers the potential of mobilising the concept of the hydrosocial cycle to further critically engage with environmental science.