395 resultados para Wasps.
Resumo:
When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The trial and error approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems. © 2011 Elsevier Inc.
Resumo:
The genus Mischocyttarus comprises 245 species of neotropical basal eusocial wasps. They form small colonies (rarely more than few tens of individuals); castes are morphologically undifferentiated and determined behaviorally by agonistic interactions. The aim of this study was to verify the effects of the experimental disruption of social hierarchy on foraging activity of Mischocyttarus cerberus styx. We observed six colonies in postemergence phase and recorded data on the foraging activity under two experimental conditions: (1) removal of lower-ranked females and (2) removal of higher ranked females, except the queen. Our results showed that the removal of higher-ranked females had higher effect on the number of foraging trips of M. cerberus styx than the removal of lower-ranked females (the number of foraging trips/hour decreased by 66.4 and 32.7, resp.). Such results are likely due to the social organization of this species and the presence of a distinct class of females, which in this study were regarded as intermediates. Our data also showed that, irrespective of the hierarchical status of the females, the removal of two or three individuals affected significantly the number of foraging trips in this species. Copyright 2011 Vanderlei Conceio Costa Filho et al.
Resumo:
Foraging behavior in social wasps is important in the development of the colony and reflects an important ecological interaction between the colony and the environment. Although the social traits of the colony play a role in the foraging activities, the conditions that establish the space and time limits are mainly physical. Here, we evaluate colonies of Polybia paulista throughout one year in order to verify the foraging activities and the items collected, as well as the importance of temperature, relative humidity, and solar radiation on motivating foraging. Collection of liquids was always higher than that of solids; preys were collected all year long, and nests showed two annual episodic expansions. The linear mixed effects (LME) model used to analyze which weather factors influence the foraging showed temperature as the most influencing factor on the collection of materials. © 2011 Naila Cristina de Souza Canevazzi and Fernando Barbosa Noll.
Resumo:
Four colonies of the ant Pachycondyla striata were used to analyze the specie behavioral repertoire. Forty-six behavioral acts were recorded in laboratory. Here, we present the record the division of labor between the castes and the temporal polyethism of monomorphic workers. The queens carried out many of the behavioral traits recorded in this work however; they performed them less frequently compared to the worker. The workers activity involved chasing and feeding on fresh insects and usingthem to nourish larvae besides laying eggs in the C-posture, an activity also performed by queens, which is similar to that of wasps of the subfamily Stenogastrinae. The young workers were involved in activities of brood care, sexuate care, and nest maintenance, and the older workers were involved in defense, exploration, and foraging. © 2012 Adolfo da Silva-Melo and Edilberto Giannotti.
Resumo:
Acylpolyamines are low molecular mass toxins occurring exclusively in the venoms from solitary wasps and some groups of spiders. Their chemical structures have been elucidated using hyphenated techniques of mass spectrometry, such as LC-MS and MS/MS, or through direct analysis with different types of NMR analyses. The chemical structures of the acylpolyamine toxins from the venoms of Nephilinae orb-web spiders appear to be organized into four parts based on the combinatorial way that the chemical building blocks are bound to each other. An aromatic moiety (part I) is connected through a linker amino acid (part II) to a polyamine chain (part III), which in turn may be connected to an optional tail (part IV). The polyamine chains were classified into seven subtypes according to the different combinations of chemical building blocks. These polyamine chains, in turn, are connected to one of three chromophore moieties: a 2,4-dihydroxyphenyl acetyl group, a 4-hydroxyindolyl acetyl group, or an indolyl acetyl group. They may be connected through an asparagine residue or sometimes through the dipeptide ornithyl asparagine. Also, nine different types of backbone tails may be attached to the polyamine chains. These toxins are noncompetitive blockers of ionotropic glutamate receptors with neuroprotective action against the neuronal death and antiepileptic effect. Thus, compounds of this class of spider venom toxin seem to represent interesting molecular models for the development of novel neuropharmaceutical drugs. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Peptides isolated from animal venoms have shown the ability to regulate pancreatic beta cell function. Characterization of wasp venoms is important, since some components of these venoms present large molecular variability, and potential interactions with different signal transduction pathways. For example, the well studied mastoparan peptides interact with a diversity of cell types and cellular components and stimulate insulin secretion via the inhibition of ATP dependent K + (K ATP) channels, increasing intracellular Ca 2+ concentration. In this study, the insulin secretion of isolated pancreatic islets from adult Swiss mice was evaluated in the presence of synthetic Agelaia MP-I (AMP-I) peptide, and some mechanisms of action of this peptide on endocrine pancreatic function were characterized. AMP-I was manually synthesized using the Fmoc strategy, purified by RP-HPLC and analyzed using ESI-IT-TOF mass spectrometry. Isolated islets were incubated at increasing glucose concentrations (2.8, 11.1 and 22.2 mM) without (Control group: CTL) or with 10 μM AMP-I (AMP-I group). AMP-I increased insulin release at all tested glucose concentrations, when compared with CTL (P < 0.05). Since molecular analysis showed a potential role of the peptide interaction with ionic channels, insulin secretion was also analyzed in the presence of 250 μM diazoxide, a K ATP channel opener and 10 μM nifedipine, a Ca 2+ channel blocker. These drugs abolished insulin secretion in the CTL group in the presence of 2.8 and 11.1 mM glucose, whereas AMP-I also enhanced insulin secretory capacity, under these glucose conditions, when incubated with diazoxide and nifedipine. In conclusion, AMP-I increased beta cell secretion without interfering in K ATP and L-type Ca 2+ channel function, suggesting a different mechanism for this peptide, possibly by G protein interaction, due to the structural similarity of this peptide with Mastoparan-X, as obtained by modeling. © 2012 Elsevier Ltd.
Resumo:
In this study, we describe the cDNA cloning, sequencing, and 3-D structure of the allergen hyaluronidase from Polybia paulista venom (Pp-Hyal). Using a proteomic approach, the native form of Pp-Hyal was purified to homogeneity and used to produce a Pp-specific polyclonal antibody. The results revealed that Pp-Hyal can be classified as a glycosyl hydrolase and that the full-length Pp-Hyal cDNA (1315 bp; GI: 302201582) is similar (80-90%) to hyaluronidase from the venoms of endemic Northern wasp species. The isolated mature protein is comprised of 338 amino acids, with a theoretical pI of 8.77 and a molecular mass of 39,648.8 Da versus a pI of 8.13 and 43,277.0 Da indicated by MS. The Pp-Hyal 3D-structural model revealed a central core (α/β)7 barrel, two sulfide bonds (Cys 19-308 and Cys 185-197), and three putative glycosylation sites (Asn79, Asn187, and Asn325), two of which are also found in the rVes v 2 protein. Based on the model, residues Ser299, Asp107, and Glu109 interact with the substrate and potential epitopes (five conformational and seven linear) located at surface-exposed regions of the structure. Purified native Pp-Hyal showed high similarity (97%) with hyaluronidase from Polistes annularis venom (Q9U6V9). Immunoblotting analysis confirmed the specificity of the Pp-Hyal-specific antibody as it recognized the Pp-Hyal protein in both the purified fraction and P. paulista crude venom. No reaction was observed with the venoms of Apis mellifera, Solenopsis invicta, Agelaia pallipes pallipes, and Polistes lanio lanio, with the exception of immune cross-reactivity with venoms of the genus Polybia (sericea and ignobilis). Our results demonstrate cross-reactivity only between wasp venoms from the genus Polybia. The absence of cross-reactivity between the venoms of wasps and bees observed here is important because it allows identification of the insect responsible for sensitization, or at least of the phylogenetically closest insect, in order to facilitate effective immunotherapy in allergic patients. © 2013 Elsevier Ltd.
Resumo:
The division of labor is a central theme in the study of social insects. In bees and wasps, this activity is regulated by age polyethism. Important physiological and morphological changes have been widely studied in the polyethism of honeybee workers. In contrast, this is a relatively unexplored subject in social vespids. Our goal was to determine if there are detectable morphological changes in the body of the Epiponini wasp Polybia paulista Von Ihering or in certain glands in relation to age polyethism. We observed changes in the body weight, the salivary gland, and the mandibular gland that were associated with age, and our results suggest that social relationships and task performance are important to these changes. This contrasts with observations in Polistes and is different from the Apis mellifera Linnaeus age polyethism model. © 2013 Sociedade Entomológica do Brasil.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
In Epiponini division of labor is associated with age polyethism and individual task specialization. We observed worker activities in three colonies of Metapoybia miltoni in Brazil. We analyzed differences of task allocation among age groups. Old workers tend to forage more than young, but age polyethism was less evident in other tasks. Age composition of population could be a determinant factor in task allocation. Workers are probably allocating to perform tasks according to colony needs, and not to individual's age. Considering age population in studies of division of labor could help to understand how colonies respond to different situations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Biologia Animal - IBILCE