911 resultados para WG 6, Security and Defence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of a complete damage energy and dpa cross section library up to 150 MeVbased on JEFF- 3.1.1 and suitable approximations (UPM) Postprocessing of photonuclear libraries (by CCFE) and thermal scattering  tables (by UPM) at the backend of the calculational system (CCFE/UPM)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of PCB-integrateable microsensors for monitoring chemical species is a goal in areas such as lab-on-a-chip analytical devices, diagnostics medicine and electronics for hand-held instruments where the device size is a major issue. Cellular phones have pervaded the world inhabitants and their usefulness has dramatically increased with the introduction of smartphones due to a combination of amazing processing power in a confined space, geolocalization and manifold telecommunication features. Therefore, a number of physical and chemical sensors that add value to the terminal for health monitoring, personal safety (at home, at work) and, eventually, national security have started to be developed, capitalizing also on the huge number of circulating cell phones. The chemical sensor-enabled “super” smartphone provides a unique (bio)sensing platform for monitoring airborne or waterborne hazardous chemicals or microorganisms for both single user and crowdsourcing security applications. Some of the latest ones are illustrated by a few examples. Moreover, we have recently achieved for the first time (covalent) functionalization of p- and n-GaN semiconductor surfaces with tuneable luminescent indicator dyes of the Ru-polypyridyl family, as a key step in the development of innovative microsensors for smartphone applications. Chemical “sensoring” of GaN-based blue LED chips with those indicators has also been achieved by plasma treatment of their surface, and the micrometer-sized devices have been tested to monitor O2 in the gas phase to show their full functionality. Novel strategies to enhance the sensor sensitivity such as changing the length and nature of the siloxane buffer layer are discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research addressed the development of a consolidated model designed especially to cover the security and usability attributes of a software product. As a starting point, we built a new usability model on the basis of well-known quality standards and models. We then used an existing security model to analyse the relationship between these two approaches. This analysis consisted of a systematic mapping study of the relationship between security and usability as global quality factors. We identified five relationship types: inverse, direct, relative, one-way inverse, and no relationship. Most authors agree that there is an inverse relationship between security and usability. However, this is not a unanimous finding, and this study unveils a number of open questions, like application domain dependency and the need to explore lower-level relationships between attribute subcharacteristics. In order to clarify the questions raised during the research, we conducted a second systematic mapping to further analyse the finer-grained structure of these factors, such as authentication as a subset of security and user efficiency as a subset of usability. The most relevant finding is that efficiency does not depend on the security level during the authentication process. There are other subfactors that require analysis. Accordingly, this research is the first part of a larger project to develop a full-blown consolidated model for security and usability.