958 resultados para Vortex configurations
Resumo:
Magnetic shielding efficiency was measured on high- Tc superconducting hollow cylinders subjected to either an axial or a transverse magnetic field in a large range of field sweep rates, dBapp/dt. The behaviour of the superconductor was modelled in order to reproduce the main features of the field penetration curves by using a minimum number of free parameters suitable for both magnetic field orientations. The field penetration measurements were carried out on Pb-doped Bi-2223 tubes at 77K by applying linearly increasing magnetic fields with a constant sweep rate ranging between 10νTs-1 and 10mTs-1 for both directions of the applied magnetic field. The experimental curves of the internal field versus the applied field, Bin(Bapp), show that, at a given sweep rate, the magnetic field for which the penetration occurs, Blim, is lower for the transverse configuration than for the axial configuration. A power law dependence with large exponent, n′, is found between Blim and dBapp/dt. The values of n′ are nearly the same for both configurations. We show that the main features of the curves B in(Bapp) can be reproduced using a simple 2D model, based on the method of Brandt, involving a E(J) power law with an n-exponent and a field-dependent critical current density, Jc(B), (following the Kim model: Jc = Jc0(1+B/B1)-1). In particular, a linear relationship between the measured n′-exponents and the n-exponent of the E(J) power law is suggested by taking into account the field dependence of the critical current density. Differences between the axial and the transverse shielding properties can be simply attributed to demagnetizing fields. © 2009 IOP Publishing Ltd.
Resumo:
To investigate whether vortex generators can be an effective form of passive flow control an experimental investigation has been conducted in a small-scale wind tunnel. With specific emphasis on supersonic inlet applications flow separation was initiated using a combined terminal shock wave and subsonic diffuser: a configuration that has been developed as a part of a program to produce a more inlet-relevant flowfield in a small-scale wind tunnel than previous studies. When flow control was initially introduced little overall flow improvement was obtained as the losses tended to be redistributed instead of removed. It became apparent that there existed a strong coupling between the center-span flow and the corner flows. As a consequence, only when flow control was applied to both the corner flows and center-span flow was a significant flow improvement obtained. When corner suction and center-span vortex generators were employed in tandem separation was much reduced and wall-pressure and stagnation pressure were notably improved. As a result, when applied appropriately, it is thought that vortex generators do have the potential to reduce the dependence on boundary-layer bleed for the purpose of separation suppression. Copyright © 2012 by Neil Titchener and Holger Babinsky. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
We provide experimental evidence for a vortex migration phenomenon in YBa2Cu3O7-δ (YBCO) thin film caused by travelling magnetic wave. The experiment is carried out on a 2 in. diameter YBCO thin film with a circular-type magnetic flux pump. We found that the travelling wave helps the vortices migrate into the centre of the sample: after the zero-field cooling process, the increase of the flux density in the centre is four times larger than the amplitude of the travelling wave. The reason for this massive vortex migration is probably due to the magnetic stress variation caused by the travelling wave: the magnetic stress increases locally in the crest region while decreases locally in the trough region, which could help the vortices to move locally. A comparison shows that the magnetization by standing wave can be easily predicted by Bean's model while travelling wave causes vortex migration generally much larger than the prediction of Bean's model. It is possible that travelling magnetic wave can be an effective way to magnetize a type II superconductor in considering this unusual vortex dynamics. © 2013 AIP Publishing LLC.
Resumo:
An experimental comparison of several vortex generator geometries was conducted at Mach 1.5, 1.8, and 2.5 to better understand downstream vortex development as a function of device shape and Mach number. The devices had heights less than that of the boundary-layer ("micro"-vortex generators) and were either vane-shaped or of the alternative microramp geometry. LDV was used to measure two components of velocity at several stations downstream of the devices. The velocity data were then fitted to a vortex model so that vortex parameters such as circulation, core radius, and trajectory were estimated. Mach number dependence was seen for all parameters. Vortex height and core radius both tended to decrease slightly with increasing Mach number. A critical vane angle for maximum circulation was observed and also decreased with increasing Mach number. Circulation was seen to scale with wall-friction velocity for Mach 1.5 and 1.8 but not 2.5. © 2012 by W.R. Nolan and H. Babinsky.
Resumo:
Mode Division Multiplexing is performed over 2km and 8km of 50μm graded-index multimode fibre using (de)multiplex phase masks based around optical vortex modes to transmit 2×56Gbps QPSK signals without MIMO equalization. © 2013 OSA.
Resumo:
An easy-to-interpret kinematic quantity measuring the average corotation of material line segments near a point is introduced and applied to vortex identification. At a given point, the vector of average corotation of line segments is defined as the average of the instantaneous local rigid-body rotation over "all planar cross sections" passing through the examined point. The vortex-identification method based on average corotation is a one-parameter, region-type local method sensitive to the axial stretching rate as well as to the inner configuration of the velocity gradient tensor. The method is derived from a well-defined interpretation of the local flow kinematics to determine the "plane of swirling" and is also applicable to compressible and variable-density flows. Practical application to direct numerical simulation datasets includes a hairpin vortex of boundary-layer transition, the reconnection process of two Burgers vortices, a flow around an inclined flat plate, and a flow around a revolving insect wing. The results agree well with some popular local methods and perform better in regions of strong shearing. Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Mode Division Multiplexing is performed over 2km and 8km of 50μm graded-index multimode fibre using (de)multiplex phase masks based around optical vortex modes to transmit 2x56Gbps QPSK signals without MIMO equalization. © 2013 OSA.
Resumo:
We studied the magnetisation of a 2 in. diameter YBCO thin film in the presence of traveling magnetic waves with six hall sensors. Simulation based on finite element method was conducted to reproduce the process of magnetisation. We discovered that the magnetisation of YBCO thin film based on traveling waves does not follow the constant current density assumption as used in the standing wave condition. We have shown that the traveling wave is more efficient in transporting the flux into the YBCO thin film, which suggests the potential of a flux injection device for high temperature superconducting coils. © 2014 AIP Publishing LLC.
Resumo:
The defects in 3C-SiC film grown on (001) plane of Si substrate were studied using a 200 kV high-resolution electron microscope with point resolution of 0.2 nm. A posterior image processing technique, the image deconvolution, was utilized in combination with the image contrast analysis to distinguish atoms of Si from C distant from each other by 0.109 nm in the [110] projected image. The principle of the image processing technique utilized and the related image contrast theory is briefly presented. The procedures of transforming an experimental image that does not reflect the crystal structure intuitively into the structure map and of identifying Si and C atoms from the map are described. The atomic configurations for a 30 degrees partial dislocation and a microtwin have been derived at atomic level. It has been determined that the 30 degrees partial dislocation terminates in C atom and the segment of microtwin is sandwiched between two 180 degrees rotation twins. The corresponding stacking sequences are derived and atomic models are constructed according to the restored structure maps for both the 30 degrees partial dislocation and microtwin. Images were simulated based on the two models to affirm the above-mentioned results.
Resumo:
The Karman vortex shedding is totally suppressed in flows past a wavy square-section cylinder at a Reynolds number of 100 and the wave steepness of 0.025. Such a phenomenon is illuminated by the numerical simulations. In the present study, the mechanism responsible for it is mainly attributed to the vertical vorticity. The geometric disturbance on the rear surface leads to the appearance of spanwise flow near the base. The specific vertical vorticity is generated on the rear surface and convecting into the near wake. The wake flow is recirculated with the appearance of the pair of recirculating cells. The interaction between the upper and lower shear layers is weakened by such cells, so that the vortex rolls could not be formed and the near wake flow becomes stable.
Resumo:
This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator Model results. Good agreement with experimental results is found.
Resumo:
The dynamic characteristics of slender cable often present serried modes with low frequencies due to large structure flexibility resulted from high aspect ratio (ratio of length to diameter of cable), while the flow velocity distributes non-uniformly along the cable span actually in practical engineering. Therefore, the prediction of the vertex-induce vibration of slender cable suffered from multi-mode and high-mode motions becomes a challenging problem. In this paper a prediction approach based on modal energy is developed to deal with multi-mode lock-in. Then it is applied to the modified wake-oscillator model to predict the VIV displacement and stress responses of cable in non-uniform flow field. At last, illustrative examples are given of which the VIV response of flexible cable in nonlinear shear flow field is analyzed. The effects of flow velocity on VIV are explored. Our results show that both displacement and stress responses become larger as the flow velocity increasing; especially higher stress response companied with higher frequency vibration should be paid enough attention in practical design of SFT because of its remarkable influence on structure fatigue life.
Resumo:
Submerged floating tunnel (SFT) is a popular concept of crossing waterways. The failure of the cable may occur due to vortex-induced-vibration (VIV), and the stability of the cable is crucial to the safety of the entire tunnel. Investigation results in recent years show that the vortex-induced vibration of the flexible cables with large aspect ratio reveals some new phenomena, for example, the vortex-induced wave, multi-mode competition, wide band random vibration, which have brought new challenges to the study of vortex-induced vibration of long flexible cables. In this paper, the dimensionless parameter controlling the wave types of dynamic response of slender cables undergoing vortex-induced vibration is investigated by means of dimensional analysis and finite element numerical simulations. Our results indicate that there are three types of response for a slender cable, i.e. standing wave vibration, traveling wave vibration and intermediate state. Based on dimensional analysis the controlling parameter is found to be related to the system damping including fluid damping and structural damping, order number of the locked-in modes and the aspect ratio of cable. Furthermore through numerical simulations and parameter regression, the expression and the critical value of controlling parameter is presented. At last the physical meaning of the parameter is analyzed and discussed.
Resumo:
Based on improving the wake-oscillator model, an analytical model for vortex-induced vibration (VIV) of flexible riser under non-uniform current is presented, in which the variation of added mass at lock-in and the nonlinear relationship between amplitude of response and reduced velocity are considered. By means of empirical formula combining iteration computation, the improved analytical model can be conveniently programmed into computer code with simpler and faster computation process than CFD so as to be suitable to application of practical engineering. This model is validated by comparing with experimental result and numerical simulation. Our results show that the improved model can predict VIV response and lock-in region more accurately. At last, illustrative examples are given in which the amplitude of response of flexible riser experiencing VIV under action of non-uniform current is calculated and effects of riser tension and flow distribution along span of riser are explored. It is demonstrated that with the variation of tension and flow distribution, lock-in region of mode behaves in different way, and thus the final response is a synthesis of response of locked modes.