815 resultados para Volatility clustering
Resumo:
The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for data represented in multidimensional input spaces. In this paper, we describe Fast Learning SOM (FLSOM) which adopts a learning algorithm that improves the performance of the standard SOM with respect to the convergence time in the training phase. We show that FLSOM also improves the quality of the map by providing better clustering quality and topology preservation of multidimensional input data. Several tests have been carried out on different multidimensional datasets, which demonstrate better performances of the algorithm in comparison with the original SOM.
Resumo:
This paper outlines a method for automatic artefact removal from multichannel recordings of event-related potentials (ERPs). The proposed method is based on, firstly, separation of the ERP recordings into independent components using the method of temporal decorrelation source separation (TDSEP). Secondly, the novel lagged auto-mutual information clustering (LAMIC) algorithm is used to cluster the estimated components, together with ocular reference signals, into clusters corresponding to cerebral and non-cerebral activity. Thirdly, the components in the cluster which contains the ocular reference signals are discarded. The remaining components are then recombined to reconstruct the clean ERPs.
Resumo:
Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy
Resumo:
Radial basis function networks can be trained quickly using linear optimisation once centres and other associated parameters have been initialised. The authors propose a small adjustment to a well accepted initialisation algorithm which improves the network accuracy over a range of problems. The algorithm is described and results are presented.
Resumo:
Numerous studies have documented the failure of the static and conditional capital asset pricing models to explain the difference in returns between value and growth stocks. This paper examines the post-1963 value premium by employing a model that captures the time-varying total risk of the value-minus-growth portfolios. Our results show that the time-series of value premia is strongly and positively correlated with its volatility. This conclusion is robust to the criterion used to sort stocks into value and growth portfolios and to the country under review (the US and the UK). Our paper is consistent with evidence on the possible role of idiosyncratic risk in explaining equity returns, and also with a separate strand of literature concerning the relative lack of reversibility of value firms' investment decisions.
Resumo:
Despite continuing developments in information technology and the growing economic significance of the emerging Eastern European, South American and Asian economies, international financial activity remains strongly concentrated in a relatively small number of international financial centres. That concentration of financial activity requires a critical mass of office occupation and creates demand for high specification, high cost space. The demand for that space is increasingly linked to the fortunes of global capital markets. That linkage has been emphasised by developments in real estate markets, notably the development of global real estate investment, innovation in property investment vehicles and the growth of debt securitisation. The resultant interlinking of occupier, asset, debt and development markets within and across global financial centres is a source of potential volatility and risk. The paper sets out a broad conceptual model of the linkages and their implications for systemic market risk and presents preliminary empirical results that provide support for the model proposed.
Resumo:
Major research on equity index dynamics has investigated only US indices (usually the S&P 500) and has provided contradictory results. In this paper a clarification and extension of that previous research is given. We find that European equity indices have quite different dynamics from the S&P 500. Each of the European indices considered may be satisfactorily modelled using either an affine model with price and volatility jumps or a GARCH volatility process without jumps. The S&P 500 dynamics are much more difficult to capture in a jump-diffusion framework.