992 resultados para Visual signals
Resumo:
Interactions between Eph receptors and their ligands the ephrin proteins are critically important in many key developmental processes. Emerging evidence also supports a role for these molecules in postembryonic tissues, particularly in pathological processes, including tissue injury and tumor metastasis. We review the signaling mechanisms that allow the 14 Eph and nine ephrin proteins to deliver intracellular signals that regulate cell shape and movement. What emerges is that the initiation of these signals is critically dependent on which Eph and ephrin proteins are expressed, the level of their expression, and, in some cases, which splice variants are expressed. Diversity at the level of initial interaction and in the downstream signaling processes regulated by Eph-ephrin signaling provides a subtle, versatile system of regulation of intercellular adhesion, cell shape, and cell motility.
Resumo:
The human nervous system constructs a Euclidean representation of near (personal) space by combining multiple sources of information (cues). We investigated the cues used for the representation of personal space in a patient with visual form agnosia (DF). Our results indicated that DF relies predominantly on binocular vergence information when determining the distance of a target despite the presence of other (retinal) cues. Notably, DF was able to construct an Euclidean representation of personal space from vergence alone. This finding supports previous assertions that vergence provides the nervous system with veridical information for the construction of personal space. The results from the current study, together with those of others, suggest that: (i) the ventral stream is responsible for extracting depth and distance information from monocular retinal cues (i.e. from shading, texture, perspective) and (ii) the dorsal stream has access to binocular information (from horizontal image disparities and vergence). These results also indicate that DF was not able to use size information to gauge target distance, suggesting that intact temporal cortex is necessary for learned size to influence distance processing. Our findings further suggest that in neurologically intact humans, object information extracted in the ventral pathway is combined with the products of dorsal stream processing for guiding prehension. Finally, we studied the size-distance paradox in visual form agnosia in order to explore the cognitive use of size information. The results of this experiment were consistent with a previous suggestion that the paradox is a cognitive phenomenon.
Resumo:
The formation of testes or ovaries in the mammalian embryo is critical in determining sexual identity and the ability to reproduce. Recent studies have begun to illuminate the cellular signalling events required for development of functional testes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The paper discusses the bistatic radar parameters for the case when the transmitter is a satellite emitting communication signals. The model utilises signals from an Iridium-like low earth orbiting satellite system. The maximum detection range, when thermal noise-limited, is discussed at the theoretical level and these results are compared with experimentation. Satellite-radar signal levels and the power of ground reflections are evaluated.
Resumo:
The spectral absorption characteristics of the visual pigments in the photoreceptors of the black bream Acanthopagrus butcheri Munro (Sparidae, Teleostei), were measured using microspectrophotometry. A single cohort of fish aged 5-172 days post-hatch (dph), aquarium-reared adults and wild-caught juveniles were investigated. During the larval stage and in juveniles younger than 100 dph, two classes of visual pigment were found, with wavelengths of maximum absorbance (lambda(max)) at approximately 425 nm and 535 nm. Following double cone formation, from 40 dph onwards, the short wavelength-sensitive pigment was recorded in single cones and the longer wavelength-sensitive pigment in double cones. From 100 dph, a gradual shift in the lambda(max) towards longer wavelengths was observed in both cone types. By 160 dph, and in adults, all single cones had a lambda(max) at approximately 475 nm while the lambda(max) in double cones ranged from 545 to 575 nm. The relationships between the lambda(max) and the ratio of bandwidth:lambda(max), for changes in either chromophore or opsin, were modelled mathematically for the long-wavelength-sensitive visual pigments. Comparing our data with the models indicated that changes in lambda(max) were not mediated by a switch from an A(1) to A(2) chromophore, rather a change in opsin expression was most likely. The shifts in the lambda(max) of the visual pigments occur at a stage when the juvenile fish begin feeding in deeper, tannin-stained estuarine waters, which transmit predominantly longer wavelengths, so the spectral sensitivity changes may represent an adaptation by the fish to the changing light environment.
Resumo:
Aims: To characterise chronic lateral epicondylalgia using the McGill Pain Questionnaire, Visual Analog Scales for pain and function, and Quantitative Sensory Tests; and to examine the relationship between these tests in a population with chronic lateral epicondylalgia. Method: Fifty-six patients (29 female, 27 male) diagnosed with unilateral lateral epicondylalgia of 18.7 months (mean) duration (range 1-300), with a mean age of 50.7 years (range 27-73) participated in this study. Each participant underwent assessment with the McGill Pain Questionnaire (MPQ), Visual Analog Scales (VAS) for pain and function. and Quantitative Sensory Tests (QST) including thermal and pressure pain thresholds, pain free grip strength, and neuromeningeal tissue testing via the upper limb tension test 2b (ULTT 2b). Results: Moderate correlation (r = .338-.514, p = .000-.013) was found between all indices of the MPQ and VAS for pain experienced in the previous 24 hours and week. Thermal pain threshold was found to be significantly higher in males. A significant poor to moderate correlation was found between the Pain Rating Index (PRI) in the sensory category of the MPQ and ULTT2b scores (r = .353, p = .038). There was no other significant correlation between MPQ and QST data. Pain free grip strength was poorly yet significantly correlated with duration of pathology (r = 318, p = .038). Conclusion: The findings of this study are in agreement with others (Melzack and Katz, 1994) regarding the multidimensional nature of pain, in a condition conventionally conceived as a musculoskeletal pain state. The findings also suggest that utilisation of only one pain measurement tool is unlikely to provide a thorough clinical picture of pain experienced with chronic lateral epicondylalgia.
Resumo:
Classical cadherins mediate cell recognition and cohesion in many tissues of the body. It is increasingly apparent that dynamic cadherin contacts play key roles during morphogenesis and that a range of cell signals are activated as cells form contacts with one another. It has been difficult, however, to determine whether these signals represent direct downstream consequences of cadherin ligation or are juxtacrine signals that are activated when cadherin adhesion brings cell surfaces together but are not direct downstream targets of cadherin signaling. In this study, we used a functional cadherin ligand (hE/Fc) to directly test whether E-cadherin ligation regulates phosphatidylinositol 3-kinase (PI 3-kinase) and Rac signaling. We report that homophilic cadherin ligation recruits Rae to nascent adhesive contacts and specifically stimulates Rae signaling. Adhesion to hE/Fc also recruits PI 3-kinase to the cadherin complex, leading to the production of phosphatidylinositol 3,4,5-trisphosphate in nascent cadherin contacts. Rae activation involved an early phase, which was PI 3-kinase-independent, and a later amplification phase, which was inhibited by wortmannin. PI 3-kinase and Rae activity were necessary for productive adhesive contacts to form following initial homophilic ligation. We conclude that E-cadherin is a cellular receptor that is activated upon homophilic ligation to signal through PI 3-kinase and Rae. We propose that a key function of these cadherin-activated signals is to control adhesive contacts, probably via regulation of the actin cytoskeleton, which ultimately serves to mediate adhesive cell-cell recognition.
Resumo:
Colour pattern variation is a striking and widespread phenomenon. Differential predation risk between individuals is often invoked to explain colour variation, but empirical support for this hypothesis is equivocal. We investigated differential conspicuousness and predation risk in two species of Australian rock dragons, Ctenophorus decresii and C. vadnappa. To humans, the coloration of males of these species varies between 'bright' and 'dull'. Visual modelling based on objective colour measurements and the spectral sensitivities of avian visual pigments showed that dragon colour variants are differentially conspicuous to the visual system of avian predators when viewed against the natural background. We conducted field experiments to test for differential predation risk, using plaster models of 'bright' and 'dull' males. 'Bright' models were attacked significantly more often than 'dull' models suggesting that differential conspicuousness translates to differential predation risk in the wild. We also examined the influence of natural geographical range on predation risk. Results from 22 localities suggest that predation rates vary according to whether predators are familiar with the prey species. This study is among the first to demonstrate both differential conspicuousness and differential predation risk in the wild using an experimental protocol. (C) 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.