996 resultados para Vincent Jouve
Resumo:
Purpose The aim of this study is to assess the refractive and visual outcomes following cataract surgery and implantation of the AcrySof IQ Toric SN6AT2 intraolcular lens (IOL) (Alcon Laboratories, Inc) in patients with low corneal astigmatism. Materials and Methods A retrospective, consecutive, single surgeon series of ninety-eight eyes of 88 patients following cataract surgery and implantation of the AcrySof IQ Toric SN6AT2 IOL in eyes with low preoperative corneal astigmatism. Postoperative measurements were obtained at one month post surgery. Main outcome measures were monocular distance visual acuity and residual refractive astigmatism. Results The mean preoperative corneal astigmatic power vector (APV) was 0.38 ± 0.09 D. Following surgery and implantation of the toric IOL, mean postoperative refractive APV was 0.13 ± 0.10 D. Mean postoperative distance uncorrected visual acuity (UCVA) was 0.08 ± 0.09 logMAR. Postoperative spherical equivalent refraction (SER) resulted in a mean of - 0.23 ± 0.22 D, with 96% of eyes falling within 0.50 D of the target SER. Conclusions The AcrySof IQ Toric SN6AT2 IOL is a safe and effective option for eyes undergoing cataract surgery with low amounts of preoperative corneal astigmatism.
Resumo:
The Lesser Grain Borer is a major pest of stored grain with a global distribution. This project has, for the first time recorded this pest throughout broad spatial areas, tens of kilometres from grain production or storage. Statistical analysis revealed that different factors such as ambient temperature and the availability of food resources affect R. dominica differently between different habitats. This suggests that, contrary to the prevailing view, this pest is not solely dependent on stored wheat and can continue to persist throughout a range of habitats. These findings have important management implications for Australia's wheat industry.
Resumo:
It is well established that calcitonin is a potent inhibitor of bone resorption; however, a physiological role for calcitonin acting through its cognate receptor, the calcitonin receptor (CTR), has not been identified. Data from previous genetically modified animal models have recognized a possible role for calcitonin and the CTR in controlling bone formation; however, interpretation of these data are complicated, in part because of their mixed genetic background. Therefore, to elucidate the physiological role of the CTR in calcium and bone metabolism, we generated a viable global CTR knockout (KO) mouse model using the Cre/loxP system, in which the CTR is globally deleted by >94% but <100%. Global CTRKOs displayed normal serum ultrafiltrable calcium levels and a mild increase in bone formation in males, showing that the CTR plays a modest physiological role in the regulation of bone and calcium homeostasis in the basal state in mice. Furthermore, the peak in serum total calcium after calcitriol [1,25(OH)2D3]-induced hypercalcemia was substantially greater in global CTRKOs compared with controls. These data provide strong evidence for a biological role of the CTR in regulating calcium homeostasis in states of calcium stress.
Resumo:
A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.
Resumo:
We report the synthesis, structure and properties of [2]rotaxanes prepared by the assembly of benzylic amide macrocycles around a series of amide and sulfide-/sulfoxide-/sulfone-containing threads. The efficacy of rotaxane formation is related to the hydrogen bond accepting properties of the various sulfur-containing functional groups in the thread, with the highest yields (up to 63% with a rigid vinyl spacer in the template site) obtained for sulfoxide rotaxanes. X-Ray crystallography of a sulfoxide rotaxane, 5, shows that the macrocycle adopts a highly symmetrical chair-like conformation in the solid state, with short hydrogen bonds between the macrocycle isophthalamide NH-protons and the amide carbonyl and sulfoxide S-O of the thread. In contrast, in the X-ray crystal structures of the analogous sulfide (4) and sulfone (6) rotaxanes the macrocycle adopts boat-like conformations with long intercomponent NH…O=SO and NH…S hydrogen bonds (in addition to several intercomponent amide-amide hydrogen bonds). Taking advantage of the different hydrogen bonding modes of the sulfur-based functional groups, a switchable molecular shuttle was prepared in which the oxidation level of sulfur determines the position of the macrocycle on the thread.
Resumo:
The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Resumo:
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9 ppt which showed best growth performance. Total sequence data generated was 467.8 Mbp, consisting of 4,116,424 reads with an average length of 112 bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Resumo:
Anisometropia represents a unique example of ocular development, where the two eyes of an individual, with an identical genetic background and seemingly subject to identical environmental influences, can grow asymmetrically to produce significantly different refractive errors. This review provides an overview of the research examining myopic anisometropia, the ocular characteristics underlying the condition and the potential aetiological factors involved. Various mechanical factors are discussed, including corneal structure, intraocular pressure and forces generated during near work that may contribute to development of anisomyopia. Potential visually guided mechanisms of unequal ocular growth are also explored, including the influence of astigmatism, accommodation, higher-order aberrations and the choroidal response to altered visual experience. The association between binocular vision, ocular dominance and asymmetric refraction is also considered, along with a review of the genetic contribution to the aetiology of myopic anisometropia. Despite a significant amount of research into the biomechanical, structural and optical characteristics of anisometropic eyes, there is still no unifying theory, which adequately explains how two eyes within the same visual system grow to different endpoints.
Resumo:
Background Prescribing is a complex task, requiring specific knowledge and skills, and the execution of effective, context-specific clinical reasoning. Prescribing errors can result in significant morbidity and mortality. For all professions with prescribing rights, a clear need exists to ensure students graduate with a well-defined set of prescribing skills, which will contribute to competent prescribing.
Resumo:
Intelligent Transport System (ITS) technology is seen as a cost-effective way to increase the conspicuity of approaching trains and the effectiveness of train warnings at level crossings by providing an in-vehicle warning of an approaching train. The technology is often seen as a potential low-cost alternative to upgrading passive level crossings with traditional active warning systems (flashing lights and boom barriers). ITS platforms provide sensor, localization and dedicated short-range communication (DSRC) technologies to support cooperative applications such as collision avoidance for road vehicles. In recent years, in-vehicle warning systems based on ITS technology have been trialed at numerous locations around Australia, at level crossing sites with active and passive controls. While significant research has been conducted on the benefits of the technology in nominal operating modes, little research has focused on the effects of the failure modes, the human factors implications of unreliable warnings and the technology adoption process from the railway industry’s perspective. Many ITS technology suppliers originate from the road industry and often have limited awareness of the safety assurance requirements, operational requirements and legal obligations of railway operators. This paper aims to raise awareness of these issues and start a discussion on how such technology could be adopted. This paper will describe several ITS implementation cenarios and discuss failure modes, human factors considerations and the impact these scenarios are likely to have in terms of safety, railway safety assurance requirements and the practicability of meeting these requirements. The paper will identify the key obstacles impeding the adoption of ITS systems for the different implementation scenarios and a possible path forward towards the adoption of ITS technology.
Resumo:
In this paper we analyse the role of some of the building blocks of SHA-256. We show that the disturbance-correction strategy is applicable to the SHA-256 architecture and we prove that functions Σ, σ are vital for the security of SHA-256 by showing that for a variant without them it is possible to find collisions with complexity 2^64 hash operations. As a step towards an analysis of the full function, we present the results of our experiments on Hamming weights of expanded messages for different variants of the message expansion and show that there exist low-weight expanded messages for XOR-linearised variants.
Resumo:
Despite the realisation of the potential implications from biosimilars is relatively recent, much has already been written about raising the awareness of differences between biosimilars and originating/ reference listed (innovator) pharmaceuticals. The European Medicines Agency has led the global charge in regulating biosimilars. Regardless of sufficient similarities across international regulations, differences do exist across jurisdictions. The consideration of regulating biosimilars demands a congruent approach across all stages: pre-registration (Australian copyright protection, patent, international obligations), registration (confidential information, international regulators, safety and efficacy), post-registration (Pharmaceutical Benefit Scheme, prescriber and dispenser awareness). Our National Medicines Policy could provide the necessary congruent framework and function for national and international regulation of biosimilars. The Policy concedes that pharmaceuticals will be affected by financial policies and trade considerations, international treaty obligations, industrial policies, education policies and the need for public-private partnerships.
Resumo:
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family