806 resultados para Video Outputs


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the use of a baited stereo-video camera system, this study semiquantitatively defined the habitat associations of 4 species of Lutjanidae: Opakapaka (Pristipomoides filamentosus), Kalekale (P. sieboldii), Onaga (Etelis coruscans), and Ehu (E. carbunculus). Fish abundance and length data from 6 locations in the main Hawaiian Islands were evaluated for species-specific and size-specific differences between regions and habitat types. Multibeam bathymetry and backscatter were used to classify habitats into 4 types on the basis of substrate (hard or soft) and slope (high or low). Depth was a major influence on bottomfish distributions. Opakapaka occurred at depths shallower than the depths at which other species were observed, and this species showed an ontogenetic shift to deeper water with increasing size. Opakapaka and Ehu had an overall preference for hard substrate with low slope (hard-low), and Onaga was found over both hard-low and hard-high habitats. No significant habitat preferences were recorded for Kalekale. Opakapaka, Kalekale, and Onaga exhibited size-related shifts with habitat type. A move into hard-high environments with increasing size was evident for Opakapaka and Kalekale. Onaga was seen predominantly in hard-low habitats at smaller sizes and in either hard-low or hard-high at larger sizes. These ontogenetic habitat shifts could be driven by reproductive triggers because they roughly coincided with the length at sexual maturity of each species. However, further studies are required to determine causality. No ontogenetic shifts were seen for Ehu, but only a limited number of juveniles were observed. Regional variations in abundance and length were also found and could be related to fishing pressure or large-scale habitat features.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. In particular there are three areas of novelty: (i) we show how a photometric model of image formation can be combined with a statistical model of generic face appearance variation, learnt offline, to generalize in the presence of extreme illumination changes; (ii) we use the smoothness of geodesically local appearance manifold structure and a robust same-identity likelihood to achieve invariance to unseen head poses; and (iii) we introduce an accurate video sequence "reillumination" algorithm to achieve robustness to face motion patterns in video. We describe a fully automatic recognition system based on the proposed method and an extensive evaluation on 171 individuals and over 1300 video sequences with extreme illumination, pose and head motion variation. On this challenging data set our system consistently demonstrated a nearly perfect recognition rate (over 99.7%), significantly outperforming state-of-the-art commercial software and methods from the literature. © Springer-Verlag Berlin Heidelberg 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe a video tracking application using the dual-tree polar matching algorithm. The models are specified in a probabilistic setting, and a particle ilter is used to perform the sequential inference. Computer simulations demonstrate the ability of the algorithm to track a simulated video moving target in an urban environment with complete and partial occlusions. © The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a system that can reliably track multiple cars in congested traffic environments. Our system's key basis is the implementation of a sequential Monte Carlo algorithm, which introduces robustness against problems arising due to the proximity between vehicles. By directly modelling occlusions and collisions between cars we obtain promising results on an urban traffic dataset. Extensions to this initial framework are also suggested. © 2010 IEEE.