943 resultados para Ventral hippocampus
Resumo:
The central point of this work is the investigation of neurogenesis in chelicerates and myriapods. By comparing decisive mechanisms in neurogenesis in the four arthropod groups (Chelicerata, Crustacea, Insecta, Myriapoda) I was able to show which of these mechanisms are conserved and which developmental modules have diverged. Thereby two processes of embryonic development of the central nervous system were brought into focus. On the one hand I studied early neurogenesis in the ventral nerve cord of the spiders Cupiennius salei and Achaearanea tepidariorum and the millipede Glomeris marginata and on the other hand the development of the brain in Cupiennius salei.rnWhile the nervous system of insects and crustaceans is formed by the progeny of single neural stem cells (neuroblasts), in chelicerates and myriapods whole groups of cells adopt the neural cell fate and give rise to the ventral nerve cord after their invagination. The detailed comparison of the positions and the number of the neural precursor groups within the neuromeres in chelicerates and myriapods showed that the pattern is almost identical which suggests that the neural precursors groups in these arthropod groups are homologous. This pattern is also very similar to the neuroblast pattern in insects. This raises the question if the mechanisms that confer regional identity to the neural precursors is conserved in arthropods although the mode of neural precursor formation is different. The analysis of the functions and expression patterns of genes which are known to be involved in this mechanism in Drosophila melanogaster showed that neural patterning is highly conserved in arthropods. But I also discovered differences in early neurogenesis which reflect modifications and adaptations in the development of the nervous systems in the different arthropod groups.rnThe embryonic development of the brain in chelicerates which was investigated for the first time in this work shows similarities but also some modifications to insects. In vertebrates and arthropods the adult brain is composed of distinct centres with different functions. Investigating how these centres, which are organised in smaller compartments, develop during embryogenesis was part of this work. By tracing the morphogenetic movements and analysing marker gene expressions I could show the formation of the visual brain centres from the single-layered precheliceral neuroectoderm. The optic ganglia, the mushroom bodies and the arcuate body (central body) are formed by large invaginations in the peripheral precheliceral neuroectoderm. This epithelium itself contains neural precursor groups which are assigned to the respective centres and thereby build the three-dimensional optical centres. The single neural precursor groups are distinguishable during this process leading to the assumption that they carry positional information which might subdivide the individual brain centres into smaller functional compartments.rn
Resumo:
Epileptic seizures are the manifestations of epilepsy, which is a major neurological disorder and occurs with a high incidence during early childhood. A fundamental mechanism underlying epileptic seizures is loss of balance between neural excitation and inhibition toward overexcitation. Glycine receptor (GlyR) is ionotropic neurotransmitter receptor that upon binding of glycine opens an anion pore and mediates in the adult nervous system a consistent inhibitory action. While previously it was assumed that GlyRs mediate inhibition mainly in the brain stem and spinal cord, recent studies reported the abundant expression of GlyRs throughout the brain, in particular during neuronal development. But no information is available regarding whether activation of GlyRs modulates neural network excitability and epileptiform activities in the immature central nervous system (CNS). Therefore the study in this thesis addresses the role of GlyRs in the modulation of neuronal excitability and epileptiform activity in the immature rat brain. By using in vitro intact corticohippocampal formation (CHF) of rats at postnatal days 4-7 and electrophysiological methods, a series of pharmacological examinations reveal that GlyRs are directly implicated in the control of hippocampal excitation levels at this age. In this thesis I am able to show that GlyRs are functionally expressed in the immature hippocampus and exhibit the classical pharmacology of GlyR, which can be activated by both glycine and the presumed endogenous agonist taurine. This study also reveals that high concentration of taurine is anticonvulsive, but lower concentration of taurine is proconvulsive. A substantial fraction of both the pro- and anticonvulsive effects of taurine is mediated via GlyRs, although activation of GABAA receptors also considerably contributes to the taurine effects. Similarly, glycine exerts both pro- and anticonvulsive effects at low and high concentrations, respectively. The proconvulsive effects of taurine and glycine depend on NKCC1-mediated Cl- accumulation, as bath application of NKCC1 inhibitor bumetanide completely abolishes proconvulsive effects of low taurine and glycine concentrations. Inhibition of GlyRs with low concentration of strychnine triggers epileptiform activity in the CA3 region of immature CHF, indicating that intrinsically an inhibitory action of GlyRs overwhelms its depolarizing action in the immature hippocampus. Additionally, my study indicates that blocking taurine transporters to accumulate endogenous taurine reduces epileptiform activity via activation of GABAA receptors, but not GlyRs, while blocking glycine transporters has no observable effect on epileptiform activity. From the main results of this study it can be concluded that in the immature rat hippocampus, activation of GlyRs mediates both pro- and anticonvulsive effects, but that a persistent activation of GlyRs is required to prevent intrinic neuronal overexcitability. In summary, this study uncovers an important role of GlyRs in the modulation of neuronal excitability and epileptiform activity in the immature rat hippocampus, and indicates that glycinergic system can potentially be a new therapeutic target against epileptic seizures of children.
Resumo:
Mesh fixation during laparoscopic ventral hernia repair can be performed using transfascial sutures or metal tacks. The aim of the present study is to compare mesh shrinkage and pain between two different techniques of mesh fixation in a prospective randomized trial.
Resumo:
Training can change the functional and structural organization of the brain, and animal models demonstrate that the hippocampus formation is particularly susceptible to training-related neuroplasticity. In humans, however, direct evidence for functional plasticity of the adult hippocampus induced by training is still missing. Here, we used musicians' brains as a model to test for plastic capabilities of the adult human hippocampus. By using functional magnetic resonance imaging optimized for the investigation of auditory processing, we examined brain responses induced by temporal novelty in otherwise isochronous sound patterns in musicians and musical laypersons, since the hippocampus has been suggested previously to be crucially involved in various forms of novelty detection. In the first cross-sectional experiment, we identified enhanced neural responses to temporal novelty in the anterior left hippocampus of professional musicians, pointing to expertise-related differences in hippocampal processing. In the second experiment, we evaluated neural responses to acoustic temporal novelty in a longitudinal approach to disentangle training-related changes from predispositional factors. For this purpose, we examined an independent sample of music academy students before and after two semesters of intensive aural skills training. After this training period, hippocampal responses to temporal novelty in sounds were enhanced in musical students, and statistical interaction analysis of brain activity changes over time suggests training rather than predisposition effects. Thus, our results provide direct evidence for functional changes of the adult hippocampus in humans related to musical training.
Resumo:
In holometabolous insects such as Drosophila melanogaster, neuroblasts produce an initial population of diverse neurons during embryogenesis and a much larger set of adult-specific neurons during larval life. In the ventral CNS, many of these secondary neuronal lineages differ significantly from one body segment to another, suggesting a role for anteroposterior patterning genes. Here we systematically characterize the expression pattern and function of the Hox gene Ultrabithorax (Ubx) in all 25 postembryonic lineages. We find that Ubx is expressed in a segment-, lineage-, and hemilineage-specific manner in the thoracic and anterior abdominal segments. When Ubx is removed from neuroblasts via mitotic recombination, neurons in these segments exhibit the morphologies and survival patterns of their anterior thoracic counterparts. Conversely, when Ubx is ectopically expressed in anterior thoracic segments, neurons exhibit complementary posterior transformation phenotypes. Our findings demonstrate that Ubx plays a critical role in conferring segment-appropriate morphology and survival on individual neurons in the adult-specific ventral CNS. Moreover, while always conferring spatial identity in some sense, Ubx has been co-opted during evolution for distinct and even opposite functions in different neuronal hemilineages.
Resumo:
Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.
Resumo:
BACKGROUND: Although visuospatial deficits have been linked with freezing of gait (FOG) in Parkinson's disease (PD), the specific effects of dorsal and ventral visual pathway dysfunction on FOG is not well understood. METHOD: We assessed visuospatial function in FOG using an angle discrimination test (dorsal visual pathway bias) and overlapping figure test (ventral visual pathway bias), and recorded overall response time, mean fixation duration and dwell time. Covariate analysis was conducted controlling for disease duration, motor severity, contrast sensitivity and attention with Bonferroni adjustments for multiple comparisons. RESULTS: Twenty seven people with FOG, 27 people without FOG and 24 controls were assessed. Average fixation duration during angle discrimination distinguished freezing status: [F (1, 43) = 4.77 p < 0.05] (1-way ANCOVA). CONCLUSION: Results indicate a preferential dysfunction of dorsal occipito-parietal pathways in FOG, independent of disease severity, attentional deficit, and contrast sensitivity.
Resumo:
Bacterial meningitis (BM) frequently causes persisting neurofunctional sequelae. Autopsy studies in patients dying from BM show characteristic apoptotic brain injury to the stem cell niche in the subgranular zone of the hippocampal dentate gyrus (DG), and this form of brain damage is associated with learning and memory deficits in experimental BM. With an eye to potential regenerative therapies, the survival, migration, and differentiation of neuronal precursor cells (NPCs) were evaluated after engraftment into the injured hippocampus in vitro and in vivo in an infant rat model of pneumococcal meningitis. Green fluorescent protein (GFP)-expressing NPCs were grafted into the DG of organotypic hippocampal slice cultures injured by challenge with live Streptococcus pneumoniae. Seven days after engraftment, NPCs had migrated from the site of injection into the injured granular layer of the DG and electro-functionally integrated into the hippocampal network. In vivo, GFP-expressing NPCs migrated within 1 week from the injection site in the hilus region to the injured granular layer of the hippocampal DG and showed neuronal differentiation at 2 and 4 weeks after transplantation. Hippocampal injury induced by BM guides grafted NPCs to the area of brain damage and provides a microenvironment for neuronal differentiation and functional integration.