967 resultados para Vascular diseases
Resumo:
Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.
Resumo:
Nontuberculous mycobacteria are ubiquitous environmental organisms that have been recognised as a cause of pulmonary infection for over 50 years. Traditionally patients have had underlying risk factors for development of disease; however the proportion of apparently immunocompetent patients involved appears to be rising. Not all patients culture-positive for mycobacteria will have progressive disease, making the diagnosis difficult, though criteria to aid in this process are available. The two main forms of disease are cavitary disease (usually involving the upper lobes) and fibronodular bronchiectasis (predominantly middle and lingular lobes). For patients with disease, combination antibiotic therapy for 12-24 months is generally required for successful treatment, and this may be accompanied by drug intolerances and side effects. Published success rates range from 30-82%. As the progression of disease is variable, for some patients, attention to pulmonary hygiene and underlying diseases without immediate antimycobacterial therapy may be more appropriate. Surgery can be a useful adjunct, though is associated with risks. Randomised controlled trials in well described patients would provide stronger evidence-based data to guide therapy of NTM lung diseases, and thus are much needed.
Resumo:
Continuous infusion (CI) ticarcillin–clavulanate is a potential therapeutic improvement over conventional intermittent dosing because the major pharmacodynamic (PD) predictor of efficacy of β-lactams is the time that free drug levels exceed the MIC. This study incorporated a 6-year retrospective arm evaluating efficacy and safety of CI ticarcillin–clavulanate in the home treatment of serious infections and a prospective arm additionally evaluating pharmacokinetics (PK) and PD. In the prospective arm, steady-state serum ticarcillin and clavulanate levels and MIC testing of significant pathogens were performed. One hundred and twelve patients (median age, 56 years) were treated with a CI dose of 9.3–12.4 g/day and mean CI duration of 18.0 days. Infections treated included osteomyelitis (50 patients), septic arthritis (6), cellulitis (17), pulmonary infections (12), febrile neutropenia (7), vascular infections (7), intra-abdominal infections (2), and Gram-negative endocarditis (2); 91/112 (81%) of patients were cured, 14 (13%) had partial response and 7 (6%) failed therapy. Nine patients had PICC line complications and five patients had drug adverse events. Eighteen patients had prospective PK/PD assessment although only four patients had sufficient data for a full PK/PD evaluation (both serum steady-state drug levels and ticarcillin and clavulanate MICs from a bacteriological isolate), as this was difficult to obtain in home-based patients, particularly as serum clavulanate levels were found to deteriorate rapidly on storage. Three of four patients with matched PK/PD assessment had free drug levels exceeding the MIC of the pathogen. Home CI of ticarcillin–clavulanate is a safe, effective, convenient and practical therapy and is a therapeutic advance over traditional intermittent dosing when used in the home setting.
Resumo:
Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.
Resumo:
PURPOSE: Hreceptor (VEGFR) and FGF receptor (FGFR) signaling pathways. EXPERIMENTAL DESIGN: Six different s.c. patient-derived HCC xenografts were implanted into mice. Tumor growth was evaluated in mice treated with brivanib compared with control. The effects of brivanib on apoptosis and cell proliferation were evaluated by immunohistochemistry. The SK-HEP1 and HepG2 cells were used to investigate the effects of brivanib on the VEGFR-2 and FGFR-1 signaling pathways in vitro. Western blotting was used to determine changes in proteins in these xenografts and cell lines. RESULTS: Brivanib significantly suppressed tumor growth in five of six xenograft lines. Furthermore, brivanib-induced growth inhibition was associated with a decrease in phosphorylated VEGFR-2 at Tyr(1054/1059), increased apoptosis, reduced microvessel density, inhibition of cell proliferation, and down-regulation of cell cycle regulators. The levels of FGFR-1 and FGFR-2 expression in these xenograft lines were positively correlated with its sensitivity to brivanib-induced growth inhibition. In VEGF-stimulated and basic FGF stimulated SK-HEP1 cells, brivanib significantly inhibited VEGFR-2, FGFR-1, extracellular signal-regulated kinase 1/2, and Akt phosphorylation. CONCLUSION: This study provides a strong rationale for clinical investigation of brivanib in patients with HCC.
Resumo:
This paper describes the cloning and characterization of a new member of the vascular endothelial growth factor (VEGF) gene family, which we have designated VRF for VEGF-related-factor. Sequencing of cDNAs from a human fetal brain library and RT-PCR products from normal and tumor tissue cDNA pools indicate two alternatively spliced messages with open reading frames of 621 and 564 bp, respectively. The predicted proteins differ at their carboxyl ends resulting from a shift in the open reading frame. Both isoforms show strong homology to VEGF at their amino termini, but only the shorter isoform maintains homology to VEGF at its carboxyl terminus and conserves all 16 cysteine residues of VEGF165. Similarity comparisons of this isoform revealed overall protein identity of 48% and conservative substitution of 69% with VEGF189. VRF is predicted to contain a signal peptide, suggesting that it may be a secreted factor. The VRF gene maps to the D11S750 locus at chromosome band 11q13, and the protein coding region, spanning approximately 5 kb, is comprised of 8 exons that range in size from 36 to 431 bp. Exons 6 and 7 are contiguous and the two isoforms of VRF arise through alternate splicing of exon 6. VRF appears to be ubiquitously expressed as two transcripts of 2.0 and 5.5 kb; the level of expression is similar among normal and malignant tissues.
Resumo:
Background: Chronic disease presents overwhelming challenges to elderly patients, their families, health care providers and the health care system. The aim of this study was to explore a theoretical model for effective management of chronic diseases, especially type 2 diabetes mellitus and/or cardiovascular disease. The assumed theoretical model considered the connections between physical function, mental health, social support and health behaviours. The study effort was to improve the quality of life for people with chronic diseases, especially type 2 diabetes and/or cardiovascular disease and to reduce health costs. Methods: A cross-sectional post questionnaire survey was conducted in early 2009 from a randomised sample of Australians aged 50 to 80 years. A total of 732 subjects were eligible for analysis. Firstly, factors influencing respondents‘ quality of life were investigated through bivariate and multivariate regression analysis. Secondly, the Theory of Planned Behaviour (TPB) model for regular physical activity, healthy eating and medication adherence behaviours was tested for all relevant respondents using regression analysis. Thirdly, TPB variable differences between respondents who have diabetes and/or cardiovascular disease and those without these diseases were compared. Finally, the TPB model for three behaviours including regular physical activity, healthy eating and medication adherence were tested in respondents with diabetes and/or cardiovascular diseases using Structure Equation Modelling (SEM). Results: This was the first study combining the three behaviours using a TPB model, while testing the influence of extra variables on the TPB model in one study. The results of this study provided evidence that the ageing process was a cumulative effect of biological change, socio-economic environment and lifelong behaviours. Health behaviours, especially physical activity and healthy eating were important modifiable factors influencing respondents‘ quality of life. Since over 80% of the respondents had at least one chronic disease, it was important to consider supporting older people‘s chronic disease self-management skills such as healthy diet, regular physical activity and medication adherence to improve their quality of life. Direct measurement of the TPB model was helpful in understanding respondents‘ intention and behaviour toward physical activity, healthy eating and medication adherence. In respondents with diabetes and/or cardiovascular disease, the TPB model predicted different proportions of intention toward three different health behaviours with 39% intending to engage in physical activity, 49% intending to engage in healthy eating and 47% intending to comply with medication adherence. Perceived behavioural control, which was proven to be the same as self-efficacy in measurement in this study, played an important role in predicting intention towards the three health behaviours. Also social norms played a slightly more important role than attitude for physical activity and medication adherence, while attitude and social norms had similar effects on healthy eating in respondents with diabetes and/or cardiovascular disease. Both perceived behavioural control and intention directly predicted recent actual behaviours. Physical activity was more a volitional control behaviour than healthy eating and medication adherence. Step by step goal setting and motivation was more important for physical activity, while accessibility, resources and other social environmental factors were necessary for improving healthy eating and medication adherence. The extra variables of age, waist circumference, health related quality of life and depression indirectly influenced intention towards the three behaviours mainly mediated through attitude and perceived behavioural control. Depression was a serious health problem that reduced the three health behaviours‘ motivation, mediated through decreased self-efficacy and negative attitude. This research provided evidence that self-efficacy is similar to perceived behavioural control in the TPB model and intention is a proximal goal toward a particular behaviour. Combining four sources of information in the self-efficacy model with the TPB model would improve chronic disease patients‘ self management behaviour and reach an improved long-term treatment outcome. Conclusion: Health intervention programs that target chronic disease management should focus on patients‘ self-efficacy. A holistic approach which is patient-centred and involves a multidisciplinary collaboration strategy would be effective. Supporting the socio-economic environment and the mental/ emotional environment for older people needs to be considered within an integrated health care system.