951 resultados para Variational calculus
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the context of the teleparallel equivalent of general relativity, the Weitzenbock manifold is considered as the limit of a suitable sequence of discrete lattices composed of an increasing number of smaller and smaller simplices, where the interior of each simplex (Delaunay lattice) is assumed to be flat. The link lengths l between any pair of vertices serve as independent variables, so that torsion turns out to be localized in the two-dimensional hypersurfaces (dislocation triangle, or hinge) of the lattice. Assuming that a vector undergoes a dislocation in relation to its initial position as it is parallel transported along the perimeter of the dual lattice (Voronoi polygon), we obtain the discrete analogue of the teleparallel action, as well as the corresponding simplicial vacuum field equations.
Resumo:
We present a convergent variational basis-set calculational scheme for elastic scattering of the positronium atom by the hydrogen atom in S wave. Highly correlated trial functions with appropriate symmetry are needed to achieve convergence. We report convergent results for scattering lengths in atomic units for both singlet (= 3.49 +/-0.20) and triplet (= 2.46 +/-0.10) states.
Resumo:
We perform variational calculations of heavy-light meson masses using a fitted formula to a lattice two-quark potential. We examine the light quark mass dependence of the meson mass using the Schrodinger equation and the Dirac equation. For the Dirac equation, a saddle-point variational principle is employed, since the Dirac Hamiltonian is not bound from below.
Resumo:
A quaternionic version of Quantum Mechanics is constructed using the Schwinger's formulation based on measurements and a Variational Principle. Commutation relations and evolution equations are provided, and the results are compared with other formulations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A stochastic variational method is applied to calculate the binding energies and root-mean-square radii of 2, 3 and 4 alpha particles using an S-wave Ali-Bodmer potential. The results agree with other calculations. We discuss the application of the present method to study the universality in weakly-bound three and four-body systems in the context of ultracold atomic traps.
Resumo:
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled S-3(1), D-3(1), channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves S-1(0), P-1(1), D-1(2), and S-3(1)-D-3(1) of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. We also show that it is trivial to modify this variational principle in order to make it suitable for bound-state calculation. The bound-state approach is illustrated for the S-3(1)-D-3(1) channel of the Reid soft-core potential for calculating the deuteron binding, wave function, and the D state asymptotic parameters. (c) 1995 Academic Press, Inc.
Resumo:
It is argued, contrary to various claims and expectations, that the phase shifts calculated via variational principles for the t matrix involving complex algebra may exhibit anomalous behavior. These anomalies are numerically demonstrated in the case of the complex Kohn and the Newton variational principles for the t matrix and are expected to appear for other similar variational principles for the t matrix, such as the Takatsuka-McKoy variational principle.
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The formalism of supersymmetric quantum mechanics provides us with the eigenfunctions to be used in the variational method to obtain the eigenvalues for the Hulthen potential.