990 resultados para Variable Speed Limits
Resumo:
A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive (X) over bar charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours This article considers the properties of the XBAR chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) XBAR chart are obtained using Markov chains. The VSS XBAR chart is substantially quicker than the traditional XBAR chart in detecting moderate shifts in the process.
Resumo:
This work will propose the control of an induction machine in field coordinates with imposed stator current based on theory of variable structure control and sliding mode. We describe the model of an induction machine in field coordinates with imposed stator current and we show the design of variable structure control and sliding mode to get a desirable dynamic performance of that plant. To estimate the inaccessible states we will use a state observer (estimator) based on field coordinates induction machine. We will present the results of simulations in any operation condition (start, speed reversal and load) and with parameters variation of the machine compared to a PI control scheme.
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours. This article considers the properties of the X̄ chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) X̄ chart are obtained using Markov chains. The VSS X̄ chart is substantially quicker than the traditional X̄ chart in detecting moderate shifts in the process.
Resumo:
A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive X̄ charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.
Resumo:
Recent studies have shown that the X̄ chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both the X̄ and R charts. A Markov chain model is used to determine the properties of the joint X and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint X̄ and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.
Resumo:
Throughout this article, it is assumed that the no-central chi-square chart with two stage samplings (TSS Chisquare chart) is employed to monitor a process where the observations from the quality characteristic of interest X are independent and identically normally distributed with mean μ and variance σ2. The process is considered to start with the mean and the variance on target (μ = μ0; σ2 = σ0 2), but at some random time in the future an assignable cause shifts the mean from μ0 to μ1 = μ0 ± δσ0, δ >0 and/or increases the variance from σ0 2 to σ1 2 = γ2σ0 2, γ > 1. Before the assignable cause occurrence, the process is considered to be in a state of statistical control (defined by the in-control state). Similar to the Shewhart charts, samples of size n 0+ 1 are taken from the process at regular time intervals. The samplings are performed in two stages. At the first stage, the first item of the i-th sample is inspected. If its X value, say Xil, is close to the target value (|Xil-μ0|< w0σ 0, w0>0), then the sampling is interrupted. Otherwise, at the second stage, the remaining n0 items are inspected and the following statistic is computed. Wt = Σj=2n 0+1(Xij - μ0 + ξiσ 0)2 i = 1,2 Let d be a positive constant then ξ, =d if Xil > 0 ; otherwise ξi =-d. A signal is given at sample i if |Xil-μ0| > w0σ 0 and W1 > knia:tl, where kChi is the factor used in determining the upper control limit for the non-central chi-square chart. If devices such as go and no-go gauges can be considered, then measurements are not required except when the sampling goes to the second stage. Let P be the probability of deciding that the process is in control and P 1, i=1,2, be the probability of deciding that the process is in control at stage / of the sampling procedure. Thus P = P1 + P 2 - P1P2, P1 = Pr[μ0 - w0σ0 ≤ X ≤ μ0+ w 0σ0] P2=Pr[W ≤ kChi σ0 2], (3) During the in-control period, W / σ0 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ0 = n0d2, i.e. W / σ0 2 - xn0 22 (λ0) During the out-of-control period, W / σ1 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ1 = n0(δ + ξ)2 / γ2 The effectiveness of a control chart in detecting a process change can be measured by the average run length (ARL), which is the speed with which a control chart detects process shifts. The ARL for the proposed chart is easily determined because in this case, the number of samples before a signal is a geometrically distributed random variable with parameter 1-P, that is, ARL = I /(1-P). It is shown that the performance of the proposed chart is better than the joint X̄ and R charts, Furthermore, if the TSS Chi-square chart is used for monitoring diameters, volumes, weights, etc., then appropriate devices, such as go-no-go gauges can be used to decide if the sampling should go to the second stage or not. When the process is stable, and the joint X̄ and R charts are in use, the monitoring becomes monotonous because rarely an X̄ or R value fall outside the control limits. The natural consequence is the user to pay less and less attention to the steps required to obtain the X̄ and R value. In some cases, this lack of attention can result in serious mistakes. The TSS Chi-square chart has the advantage that most of the samplings are interrupted, consequently, most of the time the user will be working with attributes. Our experience shows that the inspection of one item by attribute is much less monotonous than measuring four or five items at each sampling.
Resumo:
A search for supersymmetry in final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of s=7 TeV. The data sample corresponds to an integrated luminosity of 4.98 fb-1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, α T, is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. The search is performed in a signal region that is binned in the scalar sum of the transverse energy of jets and the number of jets identified as originating from a bottom quark. No excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of the constrained minimal supersymmetric extension of the standard model, and also in simplified models, with a special emphasis on compressed spectra and third-generation scenarios.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS Collaboration.
Resumo:
This work presents an alternative approach based on neural network method in order to estimate speed of induction motors, using the measurement of primary variables such as voltage and current. Induction motors are very common in many sectors of the industry and assume an important role in the national energy policy. The nowadays methodologies, which are used in diagnosis, condition monitoring and dimensioning of these motors, are based on measure of the speed variable. However, the direct measure of this variable compromises the system control and starting circuit of an electric machinery, reducing its robustness and increasing the implementation costs. Simulation results and experimental data are presented to validate the proposed approach. © 2003-2012 IEEE.
Resumo:
AIM: To compare five different protocols for estimating the lactate minimum speed (LMS) with that for estimating the maximal lactate steady state (MLSS) in Arabian horses, in order to obtain a more rapid method for monitoring aerobic capacity and prescribing training schedules. METHODS: Eight purebred Arabian horses were conditioned to exercise on a treadmill for 12 days then submitted to three to five exercise sessions to determine the MLSS. Blood samples were collected from a jugular catheter at specific intervals for measurement of lactate concentrations. The MLSS was the velocity maintained during the last 20 minutes of constant submaximal exercise, at which the concentration of lactate increased by no more than 1.0 mmol/L. The LMS test protocols (P1 - P5) included a warm-up period followed by a high-intensity gallop. The speed was then reduced to 4 m/s, and the incremental portion of the test was initiated. In P1, P2, and P3, the velocity increment was 0.5 m/s, and the duration of each incremental stage was three, five and seven minutes, respectively. In P4 and P5, the velocity increments were 1.0 and 1.5 m/s, respectively, and the duration of the stages was fixed at five minutes each. A second-degree polynomial function was fitted to the lactate-velocity curve, and the velocity corresponding to the lowest concentration of lactate was the LMS. RESULTS: Only the mean LMS determined by P1 and P2 did not differ from the velocity determined by the MLSS test (p > 0.1). There was a strong correlation (r >0.6) between P1 and the MLSS velocity. A limits of agreement plot revealed that the best agreement occurred between the MLSS test and P1 (mean bias = 0.14 m/s), followed by P2 (bias = -0.22 m/s). The lactate concentrations associated with the various LMS protocols did not differ. CONCLUSIONS: This study shows the variation between protocols of the LMS test for determining the onset of blood lactate accumulation but also reveals that, at least for Arabian horses, the P1 protocol of the LMS has good agreement with the MLSS. © 2013 Copyright New Zealand Veterinary Association.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.
Resumo:
This report is a PhD dissertation proposal to study the in-cylinder temperature and heat flux distributions within a gasoline turbocharged direct injection (GTDI) engine. Recent regulations requiring automotive manufacturers to increase the fuel efficiency of their vehicles has led to great technological achievements in internal combustion engines. These achievements have increased the power density of gasoline engines dramatically in the last two decades. Engine technologies such as variable valve timing (VVT), direct injection (DI), and turbocharging have significantly improved engine power-to-weight and power-to-displacement ratios. A popular trend for increasing vehicle fuel economy in recent years has been to downsize the engine and add VVT, DI, and turbocharging technologies so that a lighter more efficient engine can replace a larger, heavier one. With the added power density, thermal management of the engine becomes a more important issue. Engine components are being pushed to their temperature limits. Therefore it has become increasingly important to have a greater understanding of the parameters that affect in-cylinder temperatures and heat transfer. The proposed research will analyze the effects of engine speed, load, relative air-fuel ratio (AFR), and exhaust gas recirculation (EGR) on both in-cylinder and global temperature and heat transfer distributions. Additionally, the effect of knocking combustion and fuel spray impingement will be investigated. The proposed research will be conducted on a 3.5 L six cylinder GTDI engine. The research engine will be instrumented with a large number of sensors to measure in-cylinder temperatures and pressures, as well as, the temperature, pressure, and flow rates of energy streams into and out of the engine. One of the goals of this research is to create a model that will predict the energy distribution to the crankshaft, exhaust, and cooling system based on normalized values for engine speed, load, AFR, and EGR. The results could be used to aid in the engine design phase for turbocharger and cooling system sizing. Additionally, the data collected can be used for validation of engine simulation models, since in-cylinder temperature and heat flux data is not readily available in the literature..
Resumo:
Experimental work and analysis was done to investigate engine startup robustness and emissions of a flex-fuel spark ignition (SI) direct injection (DI) engine. The vaporization and other characteristics of ethanol fuel blends present a challenge at engine startup. Strategies to reduce the enrichment requirements for the first engine startup cycle and emissions for the second and third fired cycle at 25°C ± 1°C engine and intake air temperature were investigated. Research work was conducted on a single cylinder SIDI engine with gasoline and E85 fuels, to study the effect on first fired cycle of engine startup. Piston configurations that included a compression ratio change (11 vs 15.5) and piston geometry change (flattop vs bowl) were tested, along with changes in intake cam timing (95,110,125) and fuel pressure (0.4 MPa vs 3 MPa). The goal was to replicate the engine speed, manifold pressure, fuel pressure and testing temperature from an engine startup trace for investigating the first fired cycle for the engine. Results showed bowl piston was able to enable lower equivalence ratio engine starts with gasoline fuel, while also showing lower IMEP at the same equivalence ratio compared to flat top piston. With E85, bowl piston showed reduced IMEP as compression ratio increased at the same equivalence ratio. A preference for constant intake valve timing across fuels seemed to indicate that flattop piston might be a good flex-fuel piston. Significant improvements were seen with higher CR bowl piston with high fuel pressure starts, but showed no improvement with low fuel pressures. Simulation work was conducted to analyze initial three cycles of engine startup in GT-POWER for the same set of hardware used in the experimentations. A steady state validated model was modified for startup conditions. The results of which allowed an understanding of the relative residual levels and IMEP at the test points in the cam phasing space. This allowed selecting additional test points that enable use of higher residual levels, eliminating those with smaller trapped mass incapable of producing required IMEP for proper engine turnover. The second phase of experimental testing results for 2nd and 3rd startup cycle revealed both E10 and E85 prefer the same SOI of 240°bTDC at second and third startup cycle for the flat top piston and high injection pressures. E85 fuel optimal cam timing for startup showed that it tolerates more residuals compared to E10 fuel. Higher internal residuals drives down the Ø requirement for both fuels up to their combustion stability limit, this is thought to be direct benefit to vaporization due to increased cycle start temperature. Benefits are shown for an advance IMOP and retarded EMOP strategy at engine startup. Overall the amount of residuals preferred by an engine for E10 fuel at startup is thought to be constant across engine speed, thus could enable easier selection of optimized cam positions across the startup speeds.