409 resultados para VASCULATURE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied development of the ostrich lung using light microscopy as well as electron microscopy techniques. At E24, the lung comprised a few epithelial tubes, interspersed with abundant mesenchyme with scattered profiles of incipient blood vessels. Between E24 and E39, the epithelial thickness was reduced by 90% from 13.5 ± 0.41 μm to 1.33 ± 0.014 μm (mean ± SD, respectively). Atria were evident at E32, and by E35, the first portions of the blood-gas barrier (BGB) measuring 3.41 ± 1.12 μm were encountered. Gas exchange tissue was well formed by E39 with atria, infundibulae, air capillaries and a mature blood-gas barrier (BGB). BGB formation proceeded through the complex processes of secarecytosis and peremerecytosis, which entailed decapitation of epithelial cells by cutting or pinching off respectively and by E39, the BGB was thin at 2.21 ± 1.21 μm. Vascular remodeling by intussusceptive angiogenesis was a late stage process mediated by intraluminal pillars in the pulmonary vasculature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after cessation of treatment. In numerous preclinical studies, angiogenesis inhibitors were shown to be efficient in the treatment of many pathological conditions, including solid cancers. In most clinical trials, however, this approach turned out to have no significant effect, especially if applied as monotherapy. Recovery of tumors after therapy is a major problem in the management of cancer patients. The mechanisms underlying tumor recovery (or therapy resistance) have not yet been explicitly elucidated. This review deals with the transient switch from sprouting to intussusceptive angiogenesis, which may be an adaptive response of tumor vasculature to cancer therapy that allows the vasculature to maintain its functional properties. Potential candidates for molecular targeting of this angioadaptive mechanism are yet to be elucidated in order to improve the currently poor efficacy of contemporary antiangiogenic therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In idiopathic portal hypertension (IPH) typical vascular lesions are present in the branches of the portal vein or in the perisinusoidal area of the liver. Similar histological alterations have been reported in the pulmonary vasculature of patients with idiopathic pulmonary artery hypertension (IPAH). As IPAH is associated with mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, the aim of this study was to investigate whether this association might also be found in patients with IPH. Twenty-three samples belonging to 21 unrelated caucasian patients with IPH followed in the hepatic haemodynamic laboratory of the Hospital Clinic in Barcelona were included in the study. All patients were studied for the entire open reading frame and splice site of the BMPR2 gene by direct sequencing and multiple ligation probe amplification (MLPA) in order to detect large deletions/duplications. None of the 23 patients had pulmonary artery hypertension. Four patients presented one single nucleotide polymorphism (SNP) in intron 5, four patients had a SNP in exon 12 and a SNP in exon 1 was found in two cases. Two patients had both intron 5 and exon 12 polymorphisms. All SNPs were previously described. Except for these three SNPs, neither mutations nor rearrangements have been identified in the BMPR2 gene in this population. We did not detect mutations or rearrangements in the coding region of the BMPR2 gene in our patients with IPH. These findings suggest that, in contrast to IPAH, mutations in BMPR2 are not involved in the pathogenesis of IPH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Funduscopy is one of the most commonly used diagnostic tools in the ophthalmic practice, allowing for a ready assessment of pathological changes in the retinal vasculature and the outer retina. This non-invasive technique has so far been rarely used in animal model for ophthalmic diseases, albeit its potential as a screening assay in genetic screens. The zebrafish (Danio rerio) is well suited for such genetic screens for ocular alterations. Therefore we developed funduscopy in adult zebrafish and employed it as a screening tool to find alterations in the anterior segment and the fundus of the eye of genetically modified adult animals.A stereomicroscope with coaxial reflected light illumination was used to obtain fundus color images of the zebrafish. In order to find lens and retinal alterations, a pilot screen of 299 families of the F3 generation of ENU-treated adult zebrafish was carried out.Images of the fundus of the eye and the anterior segment can be rapidly obtained and be used to identify alterations in genetically modified animals. A number of putative mutants with cataracts, defects in the cornea, eye pigmentation, ocular vessels and retina were identified. This easily implemented method can also be used to obtain fundus images from rodent retinas.In summary, we present funduscopy as a valuable tool to analyse ocular abnormalities in adult zebrafish and other small animal models. A proof of principle screen identified a number of putative mutants, making funduscopy based screens in zebrafish feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New theories on the regeneration of ischemic vasculature have emerged indicating a pivotal role of adult stem cells. The aim of this study was to investigate homing and hemodynamic effects of circulating bone marrow-derived mesenchymal stem cells (MSCs) in a critically ischemic murine skin flap model. Bone marrow-derived mesenchymal stem cells (Lin(-)CD105(+)) were harvested from GFP(+)-donor mice and transferred to wildtype C57BL/6 mice. Animals receiving GFP(+)-fibroblasts served as a control group. Laser scanning confocal microscopy and intravital fluorescence microscopy were used for morphological analysis, monitoring and quantitative assessment of the stem cell homing and microhemodynamics over two weeks. Immunohistochemical staining was performed for GFP, eNOS, iNOS, VEGF. Tissue viability was analyzed by TUNEL-assay. We were able to visualize perivascular homing of MSCs in vivo. After 4 days, MSCs aligned along the vascular wall without undergoing endothelial or smooth muscle cell differentiation during the observation period. The gradual increase in arterial vascular resistance observed in the control group was abolished after MSC administration (P<0.01). At capillary level, a strong angiogenic response was found from day 7 onwards. Functional capillary density was raised in the MSC group to 197% compared to 132% in the control group (P<0.01). Paracrine expression of VEGF and iNOS, but not eNOS could be shown in the MSC group but not in the controls. In conclusion, we demonstrated that circulating bone marrow-derived MSCs home to perivascular sites in critically ischemic tissue, exhibits paracrine function and augment microhemodynamics. These effects were mediated through arteriogenesis and angiogenesis, which contributed to vascular regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arterio-venous malformations (AVMs) are congenital vascular malformations (CVMs) that result from birth defects involving the vessels of both arterial and venous origins, resulting in direct communications between the different size vessels or a meshwork of primitive reticular networks of dysplastic minute vessels which have failed to mature to become 'capillary' vessels termed "nidus". These lesions are defined by shunting of high velocity, low resistance flow from the arterial vasculature into the venous system in a variety of fistulous conditions. A systematic classification system developed by various groups of experts (Hamburg classification, ISSVA classification, Schobinger classification, angiographic classification of AVMs,) has resulted in a better understanding of the biology and natural history of these lesions and improved management of CVMs and AVMs. The Hamburg classification, based on the embryological differentiation between extratruncular and truncular type of lesions, allows the determination of the potential of progression and recurrence of these lesions. The majority of all AVMs are extra-truncular lesions with persistent proliferative potential, whereas truncular AVM lesions are exceedingly rare. Regardless of the type, AV shunting may ultimately result in significant anatomical, pathophysiological and hemodynamic consequences. Therefore, despite their relative rarity (10-20% of all CVMs), AVMs remain the most challenging and potentially limb or life-threatening form of vascular anomalies. The initial diagnosis and assessment may be facilitated by non- to minimally invasive investigations such as duplex ultrasound, magnetic resonance imaging (MRI), MR angiography (MRA), computerized tomography (CT) and CT angiography (CTA). Arteriography remains the diagnostic gold standard, and is required for planning subsequent treatment. A multidisciplinary team approach should be utilized to integrate surgical and non-surgical interventions for optimum care. Currently available treatments are associated with significant risk of complications and morbidity. However, an early aggressive approach to elimiate the nidus (if present) may be undertaken if the benefits exceed the risks. Trans-arterial coil embolization or ligation of feeding arteries where the nidus is left intact, are incorrect approaches and may result in proliferation of the lesion. Furthermore, such procedures would prevent future endovascular access to the lesions via the arterial route. Surgically inaccessible, infiltrating, extra-truncular AVMs can be treated with endovascular therapy as an independent modality. Among various embolo-sclerotherapy agents, ethanol sclerotherapy produces the best long term outcomes with minimum recurrence. However, this procedure requires extensive training and sufficient experience to minimize complications and associated morbidity. For the surgically accessible lesions, surgical resection may be the treatment of choice with a chance of optimal control. Preoperative sclerotherapy or embolization may supplement the subsequent surgical excision by reducing the morbidity (e.g. operative bleeding) and defining the lesion borders. Such a combined approach may provide an excellent potential for a curative result. Conclusion. AVMs are high flow congenital vascular malformations that may occur in any part of the body. The clinical presentation depends on the extent and size of the lesion and can range from an asymptomatic birthmark to congestive heart failure. Detailed investigations including duplex ultrasound, MRI/MRA and CT/CTA are required to develop an appropriate treatment plan. Appropriate management is best achieved via a multi-disciplinary approach and interventions should be undertaken by appropriately trained physicians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cell (DC) migration via lymphatic vessels to draining lymph nodes (dLNs) is crucial for the initiation of adaptive immunity. We imaged this process by intravital microscopy (IVM) in the ear skin of transgenic mice bearing red-fluorescent vasculature and yellow-fluorescent DCs. DCs within lymphatic capillaries were rarely transported by flow, but actively migrated within lymphatics and were significantly faster than in the interstitium. Pharmacologic blockade of the Rho-associated protein kinase (ROCK), which mediates nuclear contraction and de-adhesion from integrin ligands, significantly reduced DC migration from skin to dLNs in steady-state. IVM revealed that ROCK blockade strongly reduced the velocity of interstitial DC migration, but only marginally affected intralymphatic DC migration. By contrast, during tissue inflammation, ROCK blockade profoundly decreased both interstitial and intralymphatic DC migration. Inhibition of intralymphatic migration was paralleled by a strong up-regulation of ICAM-1 in lymphatic endothelium, suggesting that during inflammation ROCK mediates de-adhesion of DC-expressed integrins from lymphatic-expressed ICAM-1. Flow chamber assays confirmed an involvement of lymphatic-expressed ICAM-1 and DC-expressed ROCK in DC crawling on lymphatic endothelium. Overall, our findings further define the role of ROCK in DC migration to dLNs and reveal a differential requirement for ROCK in intralymphatic DC crawling during steady-state and inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-of-flight (ToF) and phase contrast (PC) magnetic resonance angiographies (MRAs) are noninvasive applications to depict the cerebral arteries. Both approaches can image the cerebral vasculature without the administration of intravenous contrast. Therefore, it is used in routine clinical evaluation of cerebrovascular diseases, e.g., aneurysm and arteriovenous malformations. However, subtle microvascular disease usually cannot be resolved with standard, clinical-field-strength MRA. The purpose of this study was to compare the ability of ToF and PC MRA to visualize the cerebral arteries at increasing field strengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To compare diagnostic accuracy of multi-station, high-spatial resolution contrast-enhanced MR angiography (CE-MRA) of the lower extremities with digital subtraction angiography (DSA) as the reference standard in patients with symptomatic peripheral arterial occlusive disease. MATERIALS AND METHODS: Of 485 consecutive patients undergoing a run-off CE-MRA, 152 patients (86 male, 66 female; mean age, 71.6 years) with suspected peripheral arterial occlusive disease were included into our Institutional Review Board approved study. All patients underwent MRA and DSA of the lower extremities within 30 days. MRA was performed at 1.5 Tesla with a single bolus of 0.1 mmol/kg body weight of gadobutrol administered at a rate of 2.0 mL/s at three stations. Two readers evaluated the MRA images independently for stenosis grade and image quality. Sensitivity and specificity were derived. RESULTS: Sensitivity and specificity ranged from 73% to 93% and 64% to 89% and were highest in the thigh area. Both readers showed comparable results. Evaluation of good and better quality MRAs resulted in a considerable improvement in diagnostic accuracy. CONCLUSION: Contrast-enhanced MRA demonstrates good sensitivity and specificity in the investigation of the vasculature of the lower extremities. While a minor investigator experience dependence remains, it is standardizable and shows good inter-observer agreement. Our results confirm that the administration of Gadobutrol at a standard dose of 0.1 mmol/kg for contrast-enhanced runoff MRA is able to detect hemodynamically relevant stenoses. Use of contrast-enhanced MRA as an alternative to intra-arterial DSA in the evaluation and therapeutic planning of patients with suspected peripheral arterial occlusive disease is well justified. J. Magn. Reson. Imaging 2013;37:1427-1435. © 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatocellular carcinoma is an insidious disease that grows without eliciting pain. In the absence of surveillance, the diagnosis of hepatocellular carcinoma is usually made at a late stage, which excludes curative treatments and leaves patients with few therapeutic options. For years, conventional chemotherapy was administered but yielded poor results. This is not surprising since hepatocytes are well equipped to survive exposure to chemotherapeutics. Hepatocytes posses an extensive repertoire of enzymes and pumps capable of degrading and exporting these drugs. Bypassing hepatocytic tumor cells in favour of supportive cells represents an alternative treatment target that has achieved modest success. The supportive cells in the hepatic vasculature comprise endothelial cells and pericytes. Thanks to a concerted effort from fundamental and pharmacological researchers, several drugs targeted to the vasculature are reaching the clinic. This manuscript reviews the rationale for targeting the vascular cells to treat hepatocellular carcinoma, the signalling pathways underlying angiogenesis and the most promising drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel microfluidic method is proposed for studying diffusion of small molecules in a hydrogel. Microfluidic devices were prepared with semi-permeable microchannels defined by crosslinked poly(ethylene glycol) (PEG). Uptake of dye molecules from aqueous solutions flowing through the microchannels was observedoptically and diffusion of the dye into the hydrogel was quantified. To complement the diffusion measurements from the microfluidic studies, nuclear magnetic resonance(NMR) characterization of the diffusion of dye in the PEG hydrogels was performed. The diffusion of small molecules in a hydrogel is relevant to applications such asdrug delivery and modeling transport for tissue-engineering applications. The diffusion of small molecules in a hydrogel is dependent on the extent of crosslinking within the gel, gel structure, and interactions between the diffusive species and the hydrogel network. These effects were studied in a model environment (semi-infinite slab) at the hydrogelfluid boundary in a microfluidic device. The microfluidic devices containing PEG microchannels were fabricated using photolithography. The unsteady diffusion of small molecules (dyes) within the microfluidic device was monitored and recorded using a digital microscope. The information was analyzed with techniques drawn from digital microscopy and image analysis to obtain concentration profiles with time. Using a diffusion model to fit this concentration vs. position data, a diffusion coefficient was obtained. This diffusion coefficient was compared to those from complementary NMR analysis. A pulsed field gradient (PFG) method was used to investigate and quantify small molecule diffusion in gradient (PFG) method was used to investigate and quantify small molecule diffusion in hydrogels. There is good agreement between the diffusion coefficients obtained from the microfluidic methods and those found from the NMR studies. The microfluidic approachused in this research enables the study of diffusion at length scales that approach those of vasculature, facilitating models for studying drug elution from hydrogels in blood-contacting applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Angiogenic signals are a vital signal of placental integrity. Aldosterone has recently been shown to enhance placental growth factor (PlGF) expression in the peripheral vasculature [1] and to promote trophoblast growth [2]. The plgf gene possesses a functional mineralocorticoid receptor responsive element in the promoter region. Objectives Thus, we hypothesized that aldosterone adapts placental angiogenesis to trophoblast growth by secreting PlGF. Methods The human choriocarcinoma cell line BeWo and first and third trimester human primary trophoblasts cells were subjected to several syncytialization signals. Upon visual confirmation, the cultured cells were subjected to either control conditions, the known stimulator forskolin, and increasing amounts of aldosterone (10−9 to 10−6 M) with and without the competitive aldosterone receptor blocker spironolactone. After 6 and 24 h of incubation, RNA and protein were extracted. PlGF transcripts were quantified by Taqman PCR normalized to several housekeeping genes. Protein expression was quantified by ELISA. Results PlGF mRNA expression increased 3-fold with forskolin in BeWo cells. In this cell line, aldosterone could slightly stimulate PlGF production. In non-syncytialized primary human first trimester trophoblasts, aldosterone did not exert a specific effect. In contrast, the term primary human trophoblasts did respond with a 2.5-fold increase after incubation with aldosterone (10−7 M) in the presence of forskolin to allow forming a syncytial layer. PlGF protein was already slightly upregulated following 6 h of incubation with aldosterone. Conclusion We concluded that aldosterone does regulate PlGF expression in specified conditions during pregnancy. Inappropriately low aldosterone levels such as in preeclampsia might such not only compromise plasma volume and trophoblast growth but also placental vascularization and systemic PlGF availability. These observations merit further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Caveolae are flask-shaped invaginations of the cell membrane; their major structural protein, caveolin-1, has been shown to regulate signaling molecules localized in these micro-domains. The interaction of caveolin-1 with several of these proteins is mediated by the binding of its scaffolding domain to a region containing hydrophobic amino acids within these proteins. The presence of such a motif within the EphB1 kinase domain prompted us to investigate the caveolar localization and regulation of EphB1 by caveolin-1. We report that EphB1 receptors are localized in caveolae, and directly interact with caveolin-1 upon ligand stimulation. This interaction, as well as EphB1-mediated activation of extracellular-signal-regulated kinase (ERK), was abrogated by overexpression of a caveolin-1 mutant lacking a functional scaffolding domain. Interaction between Ephs and caveolin-1 is not restricted to the B-subclass of receptors, since we show that EphA2 also interacts with caveolin-1. Furthermore, we demonstrate that the caveolin-binding motif within the kinase domain of EphB1 is primordial for its correct membrane targeting. Taken together, our findings establish caveolin-1 as an important regulator of downstream signaling and membrane targeting of EphB1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.