965 resultados para Ulrich Beck


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion’s dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.