951 resultados para Tuberculosis in cattle
Resumo:
The p67 sporozoite antigen of Theileria parva has been fused to the C-terminal secretion signal of Escherichia coli hemolysin and expressed in secreted form by attenuated Salmonella dublin aroA strain SL5631. The recombinant p67 antigen was detected in the supernatant of transformed bacterial cultures. Immunization trials in cattle revealed that SL5631 secreting the antigen provoked a 10-fold-higher antibody response to p67 than recombinant SL5631 expressing but not secreting p67. Immunized calves were challenged with a 80% lethal dose of T. parva sporozoites and monitored for the development of infection. Two of three calves immunized intramuscularly with the p67-secreting SL5631 strain were found to be protected, whereas only one of three animals immunized with the nonsecreting p67-expressing SL5631 strain was protected. This is the first demonstration that complete eukaryotic antigens fused to the C-terminal portion of E. coli hemolysin can be exported from attenuated Salmonella strains and that such exported antigens can protect cattle against subsequent parasite challenge.
Resumo:
One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P < 0.05), and from 59 to 88% (P < 0.05) with cumulus cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P < 0.05). The cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.
Resumo:
Effective activation of a recipient oocyte and its compatibility with the nuclear donor are critical to the successful nuclear reprogramming during nuclear transfer. We designed a series of experiments using various activation methods to determine the optimum activation efficiency of bovine oocytes. We then performed nuclear transfer (NT) of embryonic and somatic cells into cytoplasts presumably at G1/S phase (with prior activation) or at metaphase II (MII, without prior activation). Oocytes at 24 hr of maturation in vitro were activated with various combinations of calcium ionophore A23187 (A187) (5 microM, 5 min), electric pulse (EP), ethanol (7%, 7 min), cycloheximide (CHX) (10 micro g/ml, 6 hr), and then cultured in cytochalasin D (CD) for a total of 18 hr. Through a series of experiments (Exp. 1-4), an improved activation protocol (A187/EP/CHX/CD) was identified and used for comparison of NT efficiency of embryonic versus somatic donor cells (Exp. 5). When embryonic cells from morula and blastocysts (BL) were used as nuclear donors, a significantly higher rate of blastocyst development from cloned embryos was obtained with G1/S phase cytoplasts than with MII-phase cytoplasts (36 vs. 11%, P < 0.05). In contrast, when skin fibroblasts were used as donor cells, the use of an MII cytoplast (vs. G1/S phase) was imperative for blastocyst development (30 vs. 6%, P < 0.05). Differential staining showed that parthenogenetic, embryonic, and somatic cloned BL contained 26, 29, and 33% presumptive inner cell mass (ICM) cells, respectively, which is similar to that of frozen-thawed in vivo embryos at a comparable developmental stage (23%). These data indicate that embryonic and somatic nuclei require different recipient cytoplast environment for remodeling/ reprogramming, and this is likely due to the different cell cycle stage and profiles of molecular differentiation of the transferred donor nuclei.
Resumo:
Mycobacterium tuberculosis, a bacillus known to cause disease in humans since ancient times, is the etiological agent of tuberculosis (TB). The infection is primarily pulmonary, although other organs may also be affected. The prevalence of pulmonary TB disease in the US is highest along the US-Mexico border, and of the four US states bordering Mexico, Texas had the second highest percentage of cases of TB disease among Mexico-born individuals in 1999 (CDC, 2001). Between the years of 1993 and 1998, the prevalence of drug-resistant (DR) TB was 9.1% among Mexican-born individuals and 4.4% among US-born individuals (CDC, 2001). In the same time period, the prevalence of multi-drug resistant (MDR) TB was 1.4% among Mexican-born individuals and 0.6% among US-born individuals (CDC, 2001). There is a renewed urgency in the quest for faster and more effective screening, diagnosis, and treatment methods for TB due to the resurgence of tuberculosis in the US during the mid-1980s and early 1990s (CDC, 2007a), and the emergence of drug-resistant, multidrug-resistant, and extremely drug-resistant tuberculosis worldwide. Failure to identify DR and MDR-TB quickly leads to poorer treatment outcomes (CDC, 2007b). The recent rise in TB/HIV comorbidity further complicates TB control efforts. The gold standard for identification of DR-TB requires mycobacterial growth in culture, a technique taking up to three weeks, during which time DR/MDR-TB individuals harboring resistant organisms may be receiving inappropriate treatment. The goal of this study was to determine the sensitivity and specificity of real-time quantitative polymerase chain reaction (qPCR) using molecular beacons in the Texas population. qPCR using molecular beacons is a novel approach to detect mycobacterial mutations conferring drug resistance. This technique is time-efficient and has been shown to have high sensitivity and specificity in several populations worldwide. Rifampin (RIF) susceptibility was chosen as the test parameter because strains of M. tuberculosis which are resistant to RIF are likely to also be MDR. Due to its status as a point of entry for many immigrants into the US, control efforts against TB and drug-resistant TB in Texas is a vital component of prevention efforts in the US as a whole. We show that qPCR using molecular beacons has high sensitivity and specificity when compared with culture (94% and 87%, respectively) and DNA sequencing (90% and 96%, respectively). We also used receiver operator curve analysis to calculate cutoff values for the objective determination of results obtained by qPCR using molecular beacons. ^
Resumo:
The survival of Mycobacterium tuberculosis (MTB) in macrophages largely plays upon its ability to manipulate the host immune response to its benefit. Trehalose 6,6'-dimycolate (TDM) is a glycolipid found abundantly on the surface of MTB. Preliminary studies have shown that MTB lacking TDM have a lower survival rate compared to wild-type MTB in infection experiments, and that lysosomal colocalization with the phagosome occurs more readily in delipidated MTB infections. The purpose of this dissertation is to identify the possible mechanistic roles of TDM and its importance to the survival of MTB in macrophages. Our hypothesis is that TDM promotes the survival of MTB by targeting specific immune functions in host macrophages. Our first specific aim is to evaluate the effects of TDM on MTB in surface marker expression and antigen presentation in macrophages. We characterized the surface marker response in murine macrophages infected with either TDM-intact or TDM-removed MTB. We found that the presence of TDM on MTB inhibited the expression of surface markers which are important for antigen presentation and costimulation to T cells. Then we measured and compared the ability of macrophages infected by MTB with or without TDM to present Antigen 85B to hybridoma T cells. Macrophages infected with TDM-intact MTB were found to be less efficient at antigen presentation than TDM-removed MTB. Our second aim is to identify molecular mechanisms which may be targeted by TDM to promote MTB survival in macrophages. We measured macrophage responsiveness to IFN-γ before or after MTB infection and correlated SOCS production to the presence of TDM on MTB. Macrophages infected with TDM-intact MTB were found to be less responsive to IFN-γ. This may be attributed to the TDM-driven production of SOCS, which was found to affect phosphorylation of the JAK-STAT signaling pathway. We also identified the importance of TLR2 and TLR4 in the initiation of SOCS by TDM-intact MTB in host macrophages. In conclusion, our studies reveal new insights into how TDM regulates macrophages and their immune functions to aid in the survival of MTB.^
Resumo:
Screening for latent tuberculosis infection (LTBI) is an integral component of an effective tuberculosis control strategy, but one that is often relegated to the lowest priority. In a state with higher than national average rates of tuberculosis, due consideration should be given to LTBI screening. Recent large scale contact investigations in the middle school of Del Rio, Texas, raised questions about the status of school screening for LTBI. An evidence based approach was used to evaluate school screening in high risk areas of Texas. A review of the literature revealed that the current recommendations for LTBI screening in children is based on administration of a risk factor questionnaire that should be based on the four main risk factors for LTBI in children that have been identified. Six representative areas in Texas were identified for evaluation of the occurrence of contact investigations in schools for the period of 2006 to 2009 and any use of school screening programs. Of the five reporting areas that responded, only one utilized a school screening program; this reporting area had the lowest percentage of contact investigations occurring in schools. Contact investigations were most common in middle schools and least common in elementary schools. In metropolitan areas, colleges represented up to 42.9% of contact investigations. The number of contact investigations has increased from 2006 to 2008. This report represents a small sample, and further research into the frequency, distribution and risk for contact investigations in schools and the efficacy of screening programs should be done. ^
Resumo:
The purpose of this study is to evaluate characteristics of tuberculosis (TB) in diabetics and persons infected with HIV from 2004 to 2008 in Houston, Texas. This analysis will allow us to identify demographic trends. Previous studies have shown that in general, there is a higher risk for HIV+ persons to develop active TB, or to re-activate latent TB, as they progress in their HIV infection. In addition, similar to HIV, diabetes mellitus (DM) weakens the immune system so that persons with DM have also been shown to have a tendency to develop TB. This analysis will examine three areas of research: (a) to explore existing TB trends in Houston/Harris County and associated characteristics, (b) to ascertain the common risk factors of DM and HIV that are correlate with TB infections, and (c) from the analysis of the data, to determine if subsequent TB prevention programs are needed for specific subgroups.^
Resumo:
Early and accurate detection of TB disease in HIV-infected individuals is a critical step for a successful TB program. In Vietnam, the diagnosis of TB disease, which is based predominantly on the clinical examination, chest radiography (CXR) and acid fast bacilli (AFB) sputum smear, has shown to be of low sensitivity in immunocompromised patients. The sputum culture is not routinely performed for patients with AFB negative smears, even in HIV-infected individuals.^ In that background, we conducted this cross-sectional study to estimate the prevalence of sputum culture-confirmed pulmonary tuberculosis (PTB), smear-negative PTB, and multidrug-resistant TB (MDR-TB) in the HIV-infected population in Ho Chi Minh City (HCMC), the largest city in Vietnam where both TB and HIV are highly prevalent. We also evaluated the diagnostic performance of various algorithms based on routine available tools in Vietnam such as symptoms screening, CXR, and AFB smear. Nearly 400 subjects were consecutively recruited from HIV-infected patients seeking care at the An Hoa Clinic in District 6 of Ho Chi Minh City from August 2009 through June 2010. Participants’ demographic data, clinical status, CXR, and laboratory results were collected. A multiple logistic regression model was developed to assess the association of covariates and PTB. ^ The prevalence of smear-positive TB, smear-negative TB, resistant TB, and MDR-TB were 7%, 2%, 5%, 2.5%, and 0.3%, respectively. Adjusted odds ratios for low CD4+ cell count, positive sputum smear, and CXR to positive sputum culture were 3.17, 32.04, and 4.28, respectively. Clinical findings alone had poor sensitivity, but the combination of CD4+ cell count, sputum smear, and CXR proved to perform a more accurate diagnosis.^ This study results support the routine use of sputum culture to improve the detection of TB disease in HIV-infected individuals in Vietnam. When routine sputum culture is not available, an algorithm combining CD4+ cell count, sputum smear, and CXR is recommended for diagnosing PTB. Future studies on more affordable, rapid, and accurate tests for TB infection would also be necessary to timely provide specific treatments for patients in need, reduce mortality, and minimize TB transmission to the general population.^
Resumo:
It has been well documented that inmates incarcerated in prisons and correctional facilities exhibit higher incidence and prevalence of mycobacterium tuberculosis (TB) disease than the general population. This has public health implications because correctional systems may serve as reservoirs for TB disease that can lead to TB outbreaks in the facilities or can be spread to the general public once inmates are released. Although Texas has one of the largest correctional systems in both the US and the world, little is known about TB prevalence and incidence among Texas inmates. The purpose of this study was to elucidate the relationship between TB incidence and incarceration in Texas correctional facilities and investigate differences in various demographic factors. ^ The study used the national TB database from the US Centers for Disease Control and Prevention (CDC) to calculate and compare the overall incidences of TB disease among correctional facility inmates and similar non-inmates in Texas during 2005–2009. Data were also stratified by age, gender, race/ethnicity, birth status, and HIV status and compared between inmates and non-inmates using chi-squared analysis and relative risks with 95% confidence intervals to assess any significant differences. ^ Results suggest that the overall TB incidence among Texas correctional facility inmates per year (88.6 per 100,000) was significantly higher than that of Texas non-inmates (6.3 per 100,000); a 14 fold difference. Relative risk analyses by gender, race/ethnicity, and those with HIV infection found that the TB incidences for all these demographics were significantly and consistently higher in inmates compared to non-inmates. In particular, Hispanic inmates were more likely to develop TB than their non-inmate counterparts by a relative risk of 23.9 (95% CI 19.4–29.4). Likewise, both male and female inmates were more likely to develop TB than non-inmates (RR = 10.2, 95% CI 8.5–12.2; RR = 20.8, 95% CI 12.2–25.3, respectively), although female inmates unconventionally exhibited a higher TB incidence and relative risk than males inmates, which has not been shown. Among those with HIV infections, correctional facility inmates were 2.6 times were likely to develop TB disease than non-inmates (95% CI 1.5–4.4). ^ Inmates in Texas correctional facilities have a higher incidence of TB than non-inmates. Part of this higher risk may be because a large proportion of inmates come from populations already at high risks for TB, such as foreign born immigrants, those infected with HIV, and low SES groups such as many racial/ethnic minorities. Thus, these results may be used as a basis for more controlled and detailed research in the area, and to further characterize incarceration as a risk factor for TB incidence. They may also bring much needed attention about this health disparity to public health officials, legislators, and health administrators to expand and improve TB control in Texas correctional facilities, particularly among inmates released to the community, and reduce the risk of TB transmission to the general population.^
Resumo:
Multilocus-genotyping methods have shown that Escherichia coli O157:H7 is a geographically disseminated clone. However, high-resolution methods such as pulse-field gel electrophoresis demonstrate significant genomic diversity among different isolates. To assess the genetic relationship of human and bovine isolates of E. coli O157:H7 in detail, we have developed an octamer-based genome-scanning methodology, which compares the distance between over-represented, strand-biased octamers that occur in the genome. Comparison of octamer-based genome-scanning products derived from >1 megabase of the genome demonstrated the existence of two distinct lineages of E. coli O157:H7 that are disseminated within the United States. Human and bovine isolates are nonrandomly distributed among the lineages, suggesting that one of these lineages may be less virulent for humans or may not be efficiently transmitted to humans from bovine sources. Restriction fragment length polymorphism analysis with lambdoid phage genomes indicates that phage-mediated events are associated with divergence of the lineages, thereby providing one explanation for the degree of diversity that is observed among E. coli O157:H7 by other molecular-fingerprinting methods.
Resumo:
Myostatin (GDF-8) is a member of the transforming growth factor β superfamily of secreted growth and differentiation factors that is essential for proper regulation of skeletal muscle mass in mice. Here we report the myostatin sequences of nine other vertebrate species and the identification of mutations in the coding sequence of bovine myostatin in two breeds of double-muscled cattle, Belgian Blue and Piedmontese, which are known to have an increase in muscle mass relative to conventional cattle. The Belgian Blue myostatin sequence contains an 11-nucleotide deletion in the third exon which causes a frameshift that eliminates virtually all of the mature, active region of the molecule. The Piedmontese myostatin sequence contains a missense mutation in exon 3, resulting in a substitution of tyrosine for an invariant cysteine in the mature region of the protein. The similarity in phenotypes of double-muscled cattle and myostatin null mice suggests that myostatin performs the same biological function in these two species and is a potentially useful target for genetic manipulation in other farm animals.
Resumo:
Infectious diseases and malnutrition represent major burdens afflicting millions of people in developing countries. Both conditions affect individuals in industrialized nations, particularly the aged, the HIV-infected, and people with chronic diseases. While malnutrition is known to induce a state of immunodeficiency, the mechanisms responsible for compromised antimicrobial resistance in malnourished hosts remain obscure. In the present study, mice fed a 2% protein diet and developing protein calorie malnutrition, in contrast to well-nourished controls receiving a 20% protein diet, rapidly succumbed to infection with Mycobacterium tuberculosis. Malnourished mice exhibited a tissue-specific diminution in the expression of interferon γ, tumor necrosis factor α, and the inducible form of nitric oxide synthase in the lungs, but not the liver. The expression of these molecules critical to the production of mycobactericidal nitrogen oxides was depressed in malnourished animals in the lungs specifically at early times (<14 days) after infection. At later times, levels of expression became comparable to those in well-nourished controls, although the bacillary burden in the malnourished animals continued to rise. Nevertheless, urinary and serum nitrate contents, an index of total nitric oxide (NO) production in vivo, were not detectably diminished in malnourished, mycobacteria-infected mice. In contrast to the selective and early reduction of lymphokines and the inducible form of nitric oxide synthase in the lung, a marked diminution of the granulomatous reaction was observed in malnourished mice throughout the entire course of infection in all tissues examined (lungs, liver, and spleen). Remarkably, the progressively fatal course of tuberculosis observed in the malnourished mice could be reversed by restoring a full protein (20%) diet. The results indicate that protein calorie malnutrition selectively compromises several components of the cellular immune response that are important for containing and restricting tuberculous infection, and suggest that malnutrition-induced susceptibility to some infectious diseases can be reversed or ameliorated by nutritional intervention.
Resumo:
Objectives: To document the existence of drug resistance in a tuberculosis treatment programme that adheres strictly to the DOTS principles (directly observed treatment, short course) and to determine the extent of drug resistance in a prison setting in one of the republics of the former Soviet Union.