993 resultados para Tuberculin Skin Test
Resumo:
Local heating increases skin blood flow SkBF (thermal hyperemia). In a previous study, we reported that a first local thermal stimulus could attenuate the hyperemic response to a second one applied later on the same skin spot, a phenomenon that we termed desensitization. However, other studies found no evidence for desensitization in similar conditions. The aim of the present work was to test whether it was related to differences in instrumentation.
Resumo:
Besnoitia besnoiti, an apicomplexan protozoan parasite, is the causative agent of bovine besnoitiosis. This infection may dramatically affect body condition, and, in males, lead to irreversible infertility. While identification of clinical cases and their histopathological confirmation is relatively simple to carry out, finding subclinical forms of infection is more difficult, thus a more sensitive test for the identification of the etiological agent may be an appropriate diagnostic tool. We have developed the ITS1 rDNA-sequence-based conventional and real-time PCR which are highly sensitive and specific for the detection of B. besnoiti infection in cattle. A recombinant internal positive control was introduced to assess possible sample-related inhibitory effects during the amplification reaction and, in order to prevent false-positive results, a pre-PCR treatment of potentially contaminating dU-containing PCR product with uracil-DNA-glycosylase (UDG) was followed.
Resumo:
Detection of persistent infection with BovineViral Diarrhea Virus (BVDV) is essential for both epidemiological and clinical reasons. In addition to the classical virological methods such as virus isolation in tissue culture, ELISA and RT-PCR, immunohistochemistry of skin biopsies has become a useful and reliable tool. Assuming that the presence of BVDV antigen in skin structures is restricted to persistent infection, this method could differentiate from transient infection. In order to answer this question, 6 calves were experimentally infected orally with a non-cytopathic genotype 1 BVDV strain belonging to the subtype k.The calves developed fever, mucopurulent nasal discharge, coughing and leucopenia with relative lymphopenia. Immunohistochemistry of skin biopsies taken daily up to day 13-post infection did not reveal any evidence of BVDV infection. BVDV was, however, isolated from blood samples on cell cultures. Anti-NS3-antibody-ELISA and serum neutralization tests showed that all six calves seroconverted. We conclude that in acute BVDV infections, with genotype 1 and the subtypes found in Switzerland (b, e, h and k) viral antigen is not found in epidermal structures of the skin. In contrast, persistently infected animals test positive for BVD viral antigen by immunohistochemistry of the skin.
Resumo:
BACKGROUND: Aeroallergens from house dust mite (HDM) may be an important trigger in a subgroup of patients with atopic dermatitis (AD). HDM and cockroach (CR) contain cross-reactive allergens, such as tropomyosin. OBJECTIVE: To investigate the diagnostic value of patch testing with an aeroallergen and the role of CR allergen and HDM allergen in persons with AD. METHODS: We performed skin prick tests (SPT) with a panel of common aeroallergens and total serum immunoglobulin (Ig)E and specific IgE tests for CR and HDM on 23 patients with AD and 9 nonatopic control participants. Atopy patch tests (APT) were performed with CR and HDM extracts on clinically uninvolved skin on the back, and evaluated after 48 and 72 hours. RESULTS: A positive APT reaction to CR was found in 10/23 (43%) patients with AD. No positive reactions were observed in the nonatopic control participants. Positive APT reactions for CR showed no significant correlation with SPT or specific IgE levels for this allergen. Twelve of the 23 (52%) patients with AD were also sensitized to HDM. There was no significant correlation between positive results for SPT, APT, and specific IgE to CR and HDM. CONCLUSION: We demonstrate that CR allergens can induce positive patch test reactions in patients with AD. The absence of a significant correlation to SPT and specific IgE antibodies suggests that T-cell- and IgE-sensitization may be mediated by different allergens. There was no significant relationship between CR and HDM sensitivity, thus indicating no major cross-reactivity.
Resumo:
Diagnosis of drug allergy involves first the recognition of sometimes unusual symptoms as drug allergy and, second, the identification of the eliciting drug. This is an often difficult task, as the clinical picture and underlying pathomechanisms are heterogeneous. In clinical routine, physicians frequently have to rely upon a suggestive history and eventual provocation tests, both having their specific limitations. For this reason both in vivo (skin tests) and in vitro tests are investigated intensively as tools to identify the disease-eliciting drug. One of the tests evaluated in drug allergy is the basophil activation test (BAT). Basophils with their high-affinity IgE receptors are easily accessible and therefore can be used as indicator cells for IgE-mediated reactions. Upon allergen challenge and cross-linking of membrane-bound IgE antibodies (via Fc-epsilon-RI) basophils up-regulate certain activation markers on their surface such as CD63 and CD203c, as well as intracellular markers (eg, phosphorylated p38MAPK). In BAT, these alterations can be detected rapidly on a single-cell basis by multicolor flow cytometry using specific monoclonal antibodies. Combining this technique with in vitro passive sensitization of donor basophils with patients' serum, one can prove the IgE dependence of a drug reaction. This article summarizes the authors' current experience with the BAT in the diagnostic management of immediate-type drug allergy mediated by drug-specific IgE antibodies.
Resumo:
BACKGROUND Patients with Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) are often exposed simultaneously to a few potentially culprit drugs. However, both the standard lymphocyte transformation tests (LTT) with proliferation as the assay end-point as well as skin tests, if done, are often negative. OBJECTIVE As provocation tests are considered too dangerous, there is an urgent need to identify the relevant drug in SJS/TEN and to improve sensitivity of tests able to identify the causative drug. METHODS Fifteen patients with SJS/TEN with the ALDEN score ≥ 6 and 18 drug-exposed controls were included. Peripheral blood mononuclear cells (PBMC) were isolated and cultured under defined conditions with drugs. LTT was compared to the following end-points: cytokine levels in cell culture supernatant, number of granzyme B secreting cells by ELISpot and intracellular staining for granulysin and IFNγ in CD3(+) CD4(+), CD3(+) CD8(+) and NKp46(+) cells. To further enhance sensitivity, the effect of IL-7/IL-15 pre-incubation of PBMC was evaluated. RESULTS Lymphocyte transformation tests was positive in only 4/15 patients (sensitivity 27%, CI: 8-55%). Similarly, with granzyme B-ELISpot culprit drugs were positive in 5/15 patients (sensitivity 33%, CI: 12-62%). The expression of granulysin was significantly induced in NKp46(+) and CD3(+) CD4(+) cells (sensitivity 40%, CI: 16-68% and 53%, CI: 27-79% respectively). Cytokine production could be demonstrated in 38%, CI: 14-68% and 43%, CI: 18-71% of patients for IL-2 and IL-5, respectively, and in 55%, CI: 23-83% for IFNγ. Pre-incubation with IL-7/IL-15 enhanced drug-specific response only in a few patients. Specificities of tested assays were in the range of 95 (CI: 80-99%)-100% (CI: 90-100%). CONCLUSIONS AND CLINICAL RELEVANCE Granulysin expression in CD3(+) CD4(+) , Granzyme B-ELISpot and IFNγ production considered together provided a sensitivity of 80% (CI: 52-96%) and specificity of 95% (80-99%). Thus, this study demonstrated that combining different assays may be a feasible approach to identify the causative drug of SJS/TEN reactions; however, confirmation on another group of patients is necessary.
Resumo:
Since the anthrone chrysarobin oxidizes and generates free radicals, investigations were conducted to assess a possible role for free radicals or reactive oxygen species (ROS) in skin tumor promotion by chrysarobin. Epidermal glutathione levels were not noticeably altered by chrysarobin, nor did a glutathione-depleting agent enhance promotion by chrysarobin. Multiple applications of chrysarobin increased lipid peroxide levels in mouse epidermis two-fold as compared with controls. The antioxidant $\alpha$-tocopherol and the lipoxygenase inhibitor nordihydroguaiaretic acid both inhibited production of lipid peroxides by chrysarobin. The antioxidants $\alpha$-tocopherol acetate and ascorbyl palmitate effectively inhibited promotion and promoter-related effects induced by chrysarobin. Since prooxidant states can lead to increases in intracellular Ca$\sp{2+}$, the effect of two Ca$\sp{2+}$ antagonists, verapamil and TMB-8, on chrysarobin-induced promotion and promoter-related effects were investigated. Both Ca$\sp{2+}$ antagonists inhibited promotion and promoter-related effects induced by chrysarobin, suggesting a possible role for intracellular Ca$\sp{2+}$ alterations in chrysarobin-tumor promotion. Since radical generating compounds are reported to possess the ability to enhance progression of papillomas to squamous cell carcinomas (SCCs), the effects of chrysarobin on papilloma development were tested. Growth kinetics and regression of papillomas generated with limited promotion with chrysarobin were similar to what was reported for the nonradical generating promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (Aldaz et al., 1991). To test the chrysarobin's ability to enhance progression of pre-existing papillomas to SCCs, tumors were generated by initiation with dimethylbenz (a) anthracene and promotion with TPA. Then mice were treated with chrysarobin, TPA or acetone for 45 weeks. When mice treated with chrysarobin were compared to mice treated continually with TPA with similar numbers of papillomas, the number of papillomas that progressed to SCCs was similar, suggesting that papilloma burden influences the progression of papillomas to SCCs, rather than radical production. In summary, the present study suggests that chrysarobin produces oxidative stress in mouse epidermis as indicated by the generation of lipid peroxides. Antioxidants inhibited production of lipid peroxides and tumor promotion by chrysarobin. Collectively, these data suggest a role for free radicals or ROS in tumor promotion by chrysarobin. ^
Resumo:
Diagnostic tests based on cell-mediated immunity are used in programmes for eradication of bovine tuberculosis (Mycobacterium bovis). Serological assays could be applied as ancillary methods to detect infected animals. Our objective was to evaluate two serological techniques: M. bovis Ab Test (IDEXX, USA) and Enferplex™ TB assay (Enfer, Ireland) in animals tested simultaneously with the single and comparative intradermal tests and the interferon-gamma assay. This work was performed at two stages. First, a preliminary panel of samples collected prior to intradermal tests from tuberculosis-free (n=60) and M. bovis-infected herds (n=78) was assayed, obtaining high specificity: 100% (M. bovis Ab Test) and 98.3% (Enferplex TB assay) but low sensitivity (detection of M. bovis infected animals): 23.9% (M. bovis Ab Test) and 32.6% (Enferplex TB assay). Subsequently, the use of serological techniques was further studied in two herds with M. bovis infection (n=77) using samples collected prior to, and 72 h and 15 days after PPD inoculation. The highest level of detection of infected animals for serology was achieved at 15 days post-intradermal tests taking advantage of the anamnestic effect: 70.4% and 85.2% in herd A, and 66.7% and 83.3% in herd B, using M. bovis Ab Test and Enferplex TB assay, respectively. Quantitative results (average values obtained with M. bovis Ab Test ELISA and degree of positivity obtained with Enferplex TB assay) were higher in animals showing lesions compatible with tuberculosis. No significant differences were observed in the number of confirmed infected animals detected with either serological technique.
Resumo:
BACKGROUND Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. OBJECTIVE We sought to test the immunologic mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. METHODS Mice were epicutaneously sensitized with ovalbumin or peanut on an atopic dermatitis-like skin lesion, followed by intragastric antigen challenge. Antigen-specific serum IgE levels and T(H)2 cytokine responses were measured by ELISA. Expression of type 2 cytokines and mast cell proteases in the intestine were measured by using real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by using flow cytometry. In vivo basophil depletion was achieved by using diphtheria toxin treatment of Baso-DTR mice. For cell-transfer studies, the basophil population was expanded in vivo by means of hydrodynamic tail vein injection of thymic stromal lymphopoietin (TSLP) cDNA plasmid. RESULTS Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific T(H)2 cytokine responses, increased antigen-specific serum IgE levels, and accumulation of mast cells in the intestine, promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy, whereas transfer of TSLP-elicited basophils into intact skin promoted disease. CONCLUSION Epicutaneous sensitization on a disrupted skin barrier is associated with accumulation of TSLP-elicited basophils, which are necessary and sufficient to promote antigen-induced intestinal food allergy.
Resumo:
Retinoid therapy has been successful for the treatment of skin squamous cell carcinoma (SCC). A suppression of the predominant retinoid X receptor expressed in skin, retinoid X receptor α (RXRα), has been reported in skin SCC. These observations have led to the hypothesis that retinoid receptor loss contributes to the tumorigenic phenotype of epithelial cancers. To test this hypothesis, the RXRα gene was mapped in order to generate a targeting construct. Additionally the transcriptional regulation of the human RXRα a gene in keratinocytes was characterized after identifying the transcription initiation sites, the promoter, and enhancer regions of this gene. The structure is highly conserved between human and mouse. A nontumorigenic human skin-derived cell line called near diploid immortalized keratinocytes (NIKS) has the advantage of growing as organotypic raft cultures, under physiological conditions closely resembling in-vivo squamous stratification. We have exploited the raft culture technique to develop an in-vitro model for skin SCC progression that includes the NIKS cells, HaCaT cells, a premalignant cell line, and SRB 12-p9 cells, a tumorigenic SCC skin cell line. The differentiation, proliferation and nuclear receptor ligand response characteristics of this system were studied and significant and novel results were obtained. RXRs are obligate heterodimerization partners with many of the nuclear hormone receptors, including retinoic acid receptors (RARs), vitamin D3 receptors (VDR), thyroid hormone receptors (T3 R) and peroxisome proliferator activate receptors (PPARs), which are all known to be active in skin. Treatment of the three cell lines in raft culture with the RXR specific ligand BMS649, BMS961 (RARγ-specific), vitamin D3 (VDR ligand), thryoid hormone (T3R ligand) and clofibrate (PPARa ligand), and the combination of BMS649 with each of the 4 receptor partner ligands, resulted in distinct effects on differentiation, proliferation and apoptosis. The effects of activation of RXRs in each of the four-receptor pathways; in the context of skin SCC progression, with an emphasis on the VDR/RXR pathway, are discussed. These studies will lead to a better understanding of RXRα action in human skin and will help determine its role in SCC tumorigenesis, as well as its potential as a target for the prevention, treatment, and control of skin cancer. ^
Resumo:
Particle-mediated (gene gun) in vivo delivery of the murine interleukin 12 (IL-12) gene in an expression plasmid was evaluated for antitumor activity. Transfer of IL-12 cDNA into epidermal cells overlying an implanted intradermal tumor resulted in detectable levels (266.0 +/- 27.8 pg) of the transgenic protein at the skin tissue treatment site. Despite these low levels of transgenic IL-12, complete regression of established tumors (0.4-0.8 cm in diameter) was achieved in mice bearing Renca, MethA, SA-1, or L5178Y syngeneic tumors. Only one to four treatments with IL-12 cDNA-coated particles, starting on day 7 after tumor cell implantation, were required to achieve complete tumor regression. This antitumor effect was CD8+ T cell-dependent and led to the generation of tumor-specific immunological memory. By using a metastatic P815 tumor model, we further showed that a delivery of IL-12 cDNA into the skin overlying an advanced intradermal tumor, followed by tumor excision and three additional IL-12 gene transfections, could significantly inhibit systemic metastases, resulting in extended survival of test mice. These results suggest that gene gun-mediated in vivo delivery of IL-12 cDNA should be further developed for potential clinical testing as an approach for human cancer gene therapy.
Resumo:
"New series" vol. II, no. 3.
Resumo:
Background: How a scar is managed postoperatively influences Its cosmetic outcome. After Suture removal, scars are susceptible to skin tension, which may be the trigger for hypertrophic scarring. Paper tape to support the scar may reduce multidirectional forces and prevent hypertrophic scarring. Methods: Seventy patients who had under gone cesarean section at the Royal Brisbane and Women's Hospital were randomized to treatment and control groups. Patients in the control group received no postoperative intervention. Patients in the treatment group applied paper tape to their scars for 12 weeks. Scars were assessed at 6 weeks, 12 weeks, and 6 months after surgery using Ultrasound to measure intradermal scar volume. Scars were also assessed using the International Clinical Recommendations. Results: Paper tape significantly decreased scar volume by a mean of 0.16 cm(3), (95 percent confidence Interval, 0.00 to 0.29 cm(3)) At 12 weeks after surgery, 41 percent of the control group developed hypertrophic scars compared with none in the treatment group (exact test, p = 0.003). In the treatment group, one patient developed a hypertrophic scar and four developed stretched scars only after the tape was removed. The odds of developing a hypertrophic scar were 13.6 times greater in the control than in the treatment group (95 percent confidence interval, 3.6 to 66.9). Of the 70 patients randomized, 39 completed the study. Four patients in the treatment group developed a localized red rash beneath the tape. These reactions were minor and transient and resolved without medical intervention. Conclusions: The development of hypertrophic and stretched scars in the treatment group only after the tape was removed suggests that tension acting on a scar is die trigger for hypertrophic scarring. Paper tape is likely to be an effective modality for the prevention of hypertrophic scarring through its ability to eliminate scar tension.
Resumo:
The efficacy of a new skin disinfectant, 2% (w/v) chlorhexidine gluconate (CHG) in 70% (v/v) isopropyl alcohol (IPA) (ChloraPrep®), was compared with five commonly used skin disinfectants against Staphylococcus epidermidis RP62A in the presence or absence of protein, utilizing quantitative time-kill suspension and carrier tests. All six disinfectants [70% (v/v) IPA, 0.5% (w/v) aqueous CHG, 2% (w/v) aqueous CHG, 0.5% (w/v) CHG in 70% (v/v) IPA and 10% (w/v) aqueous povidone iodine (PI)] achieved a log10 reduction factor of 5, in colony-forming units/mL, in a suspension test (exposure time 30 s) in the presence and absence of 10% human serum. Subsequent challenges of S. epidermidis RP62A in a biofilm (with and without human serum) demonstrated reduced bactericidal activity. Overall, the most effective skin disinfectants tested against S. epidermidis RP62A were 2% (w/v) CHG in 70% IPA and 10% (w/v) PI. These results suggest that enhanced skin antisepsis may be achieved with 2% (w/v) CHG in 70% (v/v) IPA compared with the three commonly used CHG preparations [0.5% (w/v) aqueous CHG, 2% (w/v) aqueous CHG and 0.5% (w/v) CHG in 70% (v/v) IPA]. © 2005 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.