994 resultados para Tropical Tree Plantations
Resumo:
(Diameter and height distributions in a gallery forest tree community and some of its main species in central Brazil over a six-year period (1985-1991)). The diameter and height structure were studied over six years in approximately 64 ha of the Gama gallery forest in Brasília, DF. Trees from 10 cm dbh were measured every three years from 1985 in 151 (10 x 20 m) permanent plots. Natural regeneration (individuals under 10 cm dbh) was measured in subplots within the 200 m² plots. Most individuals and species were under 45 cm diameter and 20 m high while the maximum diameter for individual species ranged from 30 to 95 cm. The diameter structure was typical of a mixed tropical forest with the number of individuals decreasing with increasing size classes and showing little change over the six years. The most abundant species occupy different positions in the canopy and have different size structures.
Resumo:
The horizontal and vertical tree community structure in a lowland Atlantic Rain Forest was investigated through a phytosociological survey in two 0.99 ha plots in the Intervales State Park, São Paulo State. All trees > 5 cm diameter at breast height were recorded. 3,078 individuals belonging to 172 species were identified and recorded. The Shannon diversity index was H' = 3.85 nat.ind.-1. The Myrtaceae family showed the greatest floristic richness (38 species) and the highest density (745 individuals) in the stand. Euterpe edulis Mart. had the highest importance value (33.98%) accounting for 21.8% of all individuals recorded. The quantitative similarity index was higher than the qualitative index, showing little structural variation between plots. However, the large number of uncommon species resulted in pronounced floristic differences. A detrended correspondence analysis (DCA) generated three arbitrary vertical strata. Stratum A (> 26 m), where Sloanea guianensis (Aubl.) Benth. and Virola bicuhyba (Schott. ex A.DC.) Warb. were predominant showed the lowest density. Stratum B (8 m < h < 26 m) had the greatest richness and diversity, and stratum C (< 8 m) showed the highest density. Euterpe edulis, Guapira opposita (Vell.) Reitz, Garcinia gardneriana (Planch. & Triana) Zappi, and Eugenia mosenii (Kausel) Sobral were abundant in strata B and C. The occurrence of strata in tropical forests is discussed and we recommend the use of DCA for others studies of the vertical distribution of tropical forest tree communities.
Resumo:
Cyanobacteria are common in aquatic environments but are also well-adapted to terrestrial habitats where they are represented by a diversified flora. The present study aimed to contribute to our taxonomic knowledge of terrestrial cyanobacteria by way of a floristic survey of the main components of corticolous communities found in seasonal semideciduous forest fragments. Samples of visible growths of Cyanobacteria, algae, and bryophytes found on tree bark were randomly collected and their taxonomies examined. Eighteen species of Cyanobacteria were found belonging to the genera Aphanothece, Chroococcus, Lyngbya, Phormidium, Porphyrosiphon, Hapalosiphon, Hassalia, Nostoc, Scytonema, and Stigonema. Many genera and species observed in the present work have been reported in previous surveys of the aerophytic flora in several regions of the world, although six species were described only on the basis of populations found in the forest fragments studied, which highlights the importance of taxonomic studies of cyanobacteria in these habitats.
Resumo:
In forestry, availability of healthy seeds is an important factor in raising planting stock. Initial seed health and storage conditions are the major factors governing the germinability of seeds. Like seeds of agricultural and horticultural crops, forest tree seeds are also liable to be affected by micro-organisms during storage, which affects the germination, and reduces the viability. Further introduction of seed-borne diseases into newly sown crops/areas on account of using unhealthy seeds is also not ruled out. Availability of healthy stock of seedlings is intrinsic for raising plantations and to meet this requirement elimination of nursery diseases by appropriate chemicals is of prime imortance. As exotic tree species may become susceptible to various native pathogens, it is generally considered better to select indigenous tree species for large scale plantations as they are well adapted to local environment. However, before taking up large scale afforestation progranme involving any indigenous tree species, it is essential to have knowledge about seed disorders and seedling diseases and their management. with a View to select appropriate tree species with fewer seed disorders and seedling disease problems for use in further plantation programme, four indigenous tree species such as Albizia odoratissima (L.f) Benth., Lagerstroemia microcazpa Wt., Pterocazpus marsupiwn Roxb. and Xylia xylocarpa (Roxb.) Taub. were evaluated to meet the above parameters
Resumo:
We investigated seed dormancy and germination in Ficus lundellii Standl. (Moraceae), a native species of Mexico's Los Tuxtlas tropical rain forest. In an 8-h photoperiod at an alternating diurnal (16/8 h) temperature of 20/30 degrees C, germination was essentially complete (96%) within 28 days, whereas in darkness, all seeds remained dormant. Neither potassium nitrate (0.05-0.2%) applied continuously nor gibberellic acid applied either continuously (10-200 ppm) or as a 24 hour pretreatment (2000 ppm) induced germination in the dark. Germination in the light was not reduced by a 24-h hydrochloric acid (0.1-1%) pretreatment, but it was reduced both by a 24-h pretreatment with either H2O2 (0. 1-5 M) or 5% HCl, or by more than 5 days of storage at 40 degrees C (4.5% seed water content). In a study with a 2-dimensional temperature gradient plate, seeds germinated fully and rapidly in the light at a constant temperature of 30 degrees C, and fully but less rapidly in the light at alternating temperatures with low amplitudes (< 12 degrees C) about the optimal constant temperature. The base, optimal and ceiling temperatures for rate of germination were estimated as 13.8, 30.1 and 41.1 degrees C, respectively. In all temperature regimes, light was essential for the germination of F lundellii seeds.
Resumo:
A systematic evaluation of agricultural factors affecting the adaptation of the tropical oil plant Jatropha curcas L. to the semi-arid subtropical climate in Northeastern Mexico has been conducted. The factors studied include plant density and topology, as well as fungi and virus abundances. A multiple regression analysis shows that total fruit production can be well predicted by the area per plant and the total presence of fungi. Four common herbicides and a mechanical weed control measure were established at a dedicated test array and their impact on plant productivity was assessed.
Resumo:
BACKGROUND Little is known about native and non-native rodent species interactions in complex tropical agro-ecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat and assessed over 6-months the response of R. tanezumi and other rodent species. RESULTS Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas, R. everetti selected microhabitat with a dense canopy. CONCLUSION Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, whilst the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control.
Resumo:
Agricultural land use in much of Brong-Ahafo region, Ghana has been shifting from the production of food crops towards increased cashew nut cultivation in recent years. This article explores everyday, less visible, gendered and generational struggles over family farms in West Africa, based on qualitative, participatory research in a rural community that is becoming increasingly integrated into the global capitalist system. As a tree crop, cashew was regarded as an individual man's property to be passed on to his wife and children rather than to extended family members, which differed from the communal land tenure arrangements governing food crop cultivation. The tendency for land, cash crops and income to be controlled by men, despite women's and young people's significant labour contributions to family farms, and for women to rely on food crop production for their main source of income and for household food security, means that women and girls are more likely to lose out when cashew plantations are expanded to the detriment of land for food crops. Intergenerational tensions emerged when young people felt that their parents and elders were neglecting their views and concerns. The research provides important insights into gendered and generational power relations regarding land access, property rights and intra-household decision-making processes. Greater dialogue between genders and generations may help to tackle unequal power relations and lead to shared decision-making processes that build the resilience of rural communities.
Resumo:
This paper presents an open-source canopy height profile (CHP) toolkit designed for processing small-footprint full-waveform LiDAR data to obtain the estimates of effective leaf area index (LAIe) and CHPs. The use of the toolkit is presented with a case study of LAIe estimation in discontinuous-canopy fruit plantations. The experiments are carried out in two study areas, namely, orange and almond plantations, with different percentages of canopy cover (48% and 40%, respectively). For comparison, two commonly used discrete-point LAIe estimation methods are also tested. The LiDAR LAIe values are first computed for each of the sites and each method as a whole, providing “apparent” site-level LAIe, which disregards the discontinuity of the plantations’ canopies. Since the toolkit allows for the calculation of the study area LAIe at different spatial scales, between-tree-level clumpingcan be easily accounted for and is then used to illustrate the impact of the discontinuity of canopy cover on LAIe retrieval. The LiDAR LAIe estimates are therefore computed at smaller scales as a mean of LAIe in various grid-cell sizes, providing estimates of “actual” site-level LAIe. Subsequently, the LiDAR LAIe results are compared with theoretical models of “apparent” LAIe versus “actual” LAIe, based on known percent canopy cover in each site. The comparison of those models to LiDAR LAIe derived from the smallest grid-cell sizes against the estimates of LAIe for the whole site has shown that the LAIe estimates obtained from the CHP toolkit provided values that are closest to those of theoretical models.
Resumo:
Knowledge on juvenile tree growth is crucial to understand how trees reach the canopy in tropical forests. However, long-term data on juvenile tree growth are usually unavailable. Annual tree rings provide growth information for the entire life of trees and their analysis has become more popular in tropical forest regions over the past decades. Nonetheless, tree ring studies mainly deal with adult rings as the annual character of juvenile rings has been questioned. We evaluated whether juvenile tree rings can be used for three Bolivian rainforest species. First, we characterized the rings of juvenile and adult trees anatomically. We then evaluated the annual nature of tree rings by a combination of three indirect methods: evaluation of synchronous growth patterns in the tree- ring series, (14)C bomb peak dating and correlations with rainfall. Our results indicate that rings of juvenile and adult trees are defined by similar ring-boundary elements. We built juvenile tree-ring chronologies and verified the ring age of several samples using (14)C bomb peak dating. We found that ring width was correlated with rainfall in all species, but in different ways. In all, the chronology, rainfall correlations and (14)C dating suggest that rings in our study species are formed annually.
Resumo:
In the present work the distribution of ions in aboveground plant parts was studied in order to establish the suitability of using radiocaesium as a tracer for the plant absorption of nutrients, such as potassium (K(+)) and ammonium (NH(4)(+)). We present the results for the distributions of (137)Cs, (40)K and NH(4)(+) from four tropical plant species: lemon (Citrus aurantifolia), orange (Citrus sinensis), guava (Psidium guajava) and chili pepper (Capsicum frutescens). Activity concentrations of (137)Cs and (40)K were measured by gamma spectrometry and concentrations of free NH(4)(+) ions by a colorimetric method. Similarly to potassium and ammonium, caesium showed a high mobility within the plants, exhibiting the highest values of concentration in the growing parts of the tree (fruits, new leaves, twigs, and barks). A significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The K/Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting that caesium could be a good tracer for (40)K in tropical woody fruit species. Despite the similarity observed for the behaviour of caesium and ammonium in the newly grown plant compartments, (137)Cs was not well correlated with NH(4)(+). Significant temporal changes in the NH(4)(+) concentrations were observed during the development of fruits, while the (137)Cs activity concentration alterations were not of great importance, indicating, therefore, that Cs(+) and free NH(4)(+) ions could have distinct concentration ratios for each particular plant organ. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Land use leads to massive habitat destruction and fragmentation in tropical forests. Despite its global dimensions the effects of fragmentation on ecosystem dynamics are not well understood due to the complexity of the problem. We present a simulation analysis performed by the individual-based model FORMIND. The model was applied to the Brazilian Atlantic Forest, one of the world`s biodiversity hot spots, at the Plateau of Sao Paulo. This study investigates the long-term effects of fragmentation processes on structure and dynamics of different sized remnant tropical forest fragments (1-100 ha) at community and plant functional type (PFT) level. We disentangle the interplay of single effects of different key fragmentation processes (edge mortality, increased mortality of large trees, local seed loss and external seed rain) using simulation experiments in a full factorial design. Our analysis reveals that particularly small forest fragments below 25 ha suffer substantial structural changes, biomass and biodiversity loss in the long term. At community level biomass is reduced up to 60%. Two thirds of the mid- and late-successional species groups, especially shade-tolerant (late successional climax) species groups are prone of extinction in small fragments. The shade-tolerant species groups were most strongly affected; its tree number was reduced more than 60% mainly by increased edge mortality. This process proved to be the most powerful of those investigated, explaining alone more than 80% of the changes observed for this group. External seed rain was able to compensate approximately 30% of the observed fragmentation effects for shade-tolerant species. Our results suggest that tropical forest fragments will suffer strong structural changes in the long term, leading to tree species impoverishment. They may reach a new equilibrium with a substantially reduced subset of the initial species pool, and are driven towards an earlier successional state. The natural regeneration potential of a landscape scattered with forest fragments appears to be limited, as external seed rain is not able to fully compensate for the observed fragmentation-induced changes. Our findings suggest basic recommendations for the management of fragmented tropical forest landscapes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Although seasonal metabolic variation in ectothermic tetrapods has been investigated primarily in the context of species showing some level of metabolic depression during winter, but several species of anurans maintain their activity patterns throughout the year in tropical and subtropical areas. The tree-frog Hypsiboas prasinus occurs in the subtropical Atlantic Forest and remains reproductively active during winter, at temperatures below 10 degrees C. We compared males calling in summer and winter, and found that males of H. prasinus exhibit seasonal adjustments in metabolic and morphometric variables. Individuals calling during winter were larger and showed higher resting metabolic rates than those calling during summer. Calling rates were not affected by season. Winter animals showed lower liver and heart activity level of citrate synthase (CS), partially compensated by larger liver mass. Winter individuals also showed higher activity Of pyruvate kinase (PK) and lower activity of CS in trunk muscles, and higher activity of CS in leg muscles. Winter metabolic adjustments seem to be achieved by both compensatory mechanisms to the lower environmental temperature and a seasonally oriented aerobic depression of several organs. The impact of seasonal metabolic changes on calling performance and the capacity of subtropical anurans for metabolic thermal acclimatization are also discussed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Recent developments have highlighted the importance of forest amount at large spatial scales and of matrix quality for ecological processes in remnants. These developments, in turn, suggest the potential for reducing biodiversity loss through the maintenance of a high percentage of forest combined with sensitive management of anthropogenic areas. We conducted a multi-taxa survey to evaluate the potential for biodiversity maintenance in an Atlantic forest landscape that presented a favorable context from a theoretical perspective (high proportion of mature forest partly surrounded by structurally complex matrices). We sampled ferns, butterflies, frogs, lizards, bats, small mammals and birds in interiors and edges of large and small mature forest remnants and two matrices (second-growth forests and shade cacao plantations), as well as trees in interiors of small and large remnants. By considering richness, abundance and composition of forest specialists and generalists, we investigated the biodiversity value of matrix habitats (comparing them with interiors of large remnants for all groups except tree), and evaluated area (for all groups) and edge effects (for all groups except trees) in mature forest remnants. our results suggest that in landscapes comprising high amounts of mature forest and low contrasting matrices: (1) shade cacao plantations and second-growth forests harbor an appreciable number of forest specialists; (2) most forest specialist assemblages are not affected by area or edge effects, while most generalist assemblages proliferate at edges of small remnants. Nevertheless, differences in tree assemblages, especially among smaller trees, Suggest that observed patterns are unlikely to be stable over time. (C) 2009 Elsevier Ltd. All rights reserved.