972 resultados para Tree Crown Segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crown ethers, 2,3-benzo-1,4,7,10,13-pentaoxa-cyclopentadeca-2-ene and 2,3, ll,12-dibenzo-l,4,7,10,13,16-hexaoxscyclooctadeca-2,11-diene are incorporated into H,N'-ethylenebis(acetylacetoneimino) nickel(II) and copper(II), phenol, and β-naphthol by diazo coupling reactions. The selective nature of the coupling reaction has-been demonstrated by the isolation of both asymmetric mono- and symmetric bis(glyoxalarylcrownhydrazoneimino) metal(II) complexes. An interesting binuclear complex containing two intramolecularly rearranged (glyoxal-hydrazonearylimino) metal(II) groups joined by 18-crown-6 result8 when bis(arenediazonium)-18-crown-6 is coupled with the metal(I1) Schiff bases. The substituted ethers form cationic salts with NaClO4, KCNS, NH4CNS, 14g(CNS)2 and Ca(CNS)2. All the synthesised ethers exhibit ion selectivity sequence as K+ > Na+ and Ca2+ > Mg2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of benzo-15-crown-5, dibenzo-18-crown-6 and dibenzo-24-crown-8 with 2-dicyanoethylene 1,3-indane dione in CH2Cl2 has been described in terms of the formation of 1 : 1 molecular complexes. The magnitude of association constants and thermodynamic parameters indicate cooperative interactions of oxygens with the acceptors. The 1H and 13C NMR spectra of the complexes show that gyama-gyama interactions are a major source of ground state stabilization in these complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invasive rust Puccinia psidii (myrtle rust) was detected in Australia in 2010 and is now established along the east coast from southern New South Wales to far north Queensland. Prior to reaching Australia, severe damage from P. psidii was mainly restricted to exotic eucalypt plantations in South America, guava plantations in Brazil, allspice plantations in Jamaica, and exotic Myrtaceous tree species in the USA; the only previous record of widespread damage in native environments is of endangered Eugenia koolauensis in Hawai’i. Using two rainforest tree species as indicators of the impact of P. psidii, we report for the first time severe damage to endemic Myrtaceae in native forests in Australia, after only 4 years’ exposure to P. psidii. A 3-year disease exclusion trial in a natural stand of Rhodamnia rubescens unequivocally showed that repeated, severe infection leads to gradual crown loss and ultimately tree mortality; trees were killed in less than 4 years. Significant (p < 0.001) correlations were found between both incidence (r = 0.36) and severity (r = 0.38) of P. psidii and subsequent crown loss (crown transparency). This provided supporting evidence to conclude a causal association between P. psidii and crown loss and tree mortality in our field assessments of R. rubescens and Rhodomyrtus psidioides across their native range. Assessments revealed high levels of damage by P. psidii to immature leaves, shoots and tree crowns—averaging 76 % (R. rubescens) and 95 % (R. psidioides) crown transparency—as well as tree mortality. For R. psidioides, we saw exceptionally high levels of tree mortality, with over half the trees surveyed dead and 40 % of stands with greater than 50 % tree mortality, including two stands where all trees were dead. Tree mortality was less prevalent for R. rubescens, with only 12 % of trees surveyed dead and two sites with greater than 50 % mortality. Any alternative causal agents for this tree mortality have been discounted. The ecological implications of this are unclear, but our work clearly illustrates the potential for P. psidii to negatively affect Australia’s biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of root dry matter (DM) allocation, in relation to differing vigour conferred by rootstock cultivars, is required to understand the structural relationships between rootstock and scion. We investigated the mass of roots (four size classes up to 23 mm diameter) by coring proximal to five polyembryonic mango rootstock cultivars known to differ in their effects on the vigour and productivity of scion cultivar ‘Kensington Pride’, in a field trial of 13-year-old trees. Significant differences in fine (<0.64 and 0.64–1.88 mm diameter) and small (1.88–7.50 mm) root DM contents were observed between rootstock cultivars. There was a complex relationship between the amount of feeder (fine and small size classes) roots and scion size (trunk cross sectional area, TCSA), with intermediate size trees on rootstock MYP having the most feeder roots, while the smallest trees, on the rootstock Vellaikulamban had the least of these roots. Across rootstock cultivars, tree vigour (TCSA growth rate) was negatively and significantly related to the ratio of fine root DM/scion TCSA, suggesting this may be a useful indicator of the vigour that different rootstocks confer on the scion. In contrast non-ratio root DM and scion TCSA results had no significant relationships. The significant rootstock effects on orchard root growth and tree size could not be predicted from earlier differences in nursery seedling vigour, nor did seedling vigour predict root DM allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maximum height of a siphon is generally assumed to be dependent on barometric pressure—about 10 m at sea level. This limit arises because the pressure in a siphon above the upper reservoir level is below the ambient pressure, and when the height of a siphon approaches 10 m, the pressure at the crown of the siphon falls below the vapour pressure of water causing water to boil breaking the column. After breaking, the columns on either side are supported by differential pressure between ambient and the low-pressure region at the top of the siphon. Here we report an experiment of a siphon operating at sea level at a height of 15 m, well above 10 m. Prior degassing of the water prevented cavitation. This experiment provides conclusive evidence that siphons operate through gravity and molecular cohesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignin is a hydrophobic polymer that is synthesised in the secondary cell walls of all vascular plants. It enables water conduction through the stem, supports the upright growth habit and protects against invading pathogens. In addition, lignin hinders the utilisation of the cellulosic cell walls of plants in pulp and paper industry and as forage. Lignin precursors are synthesised in the cytoplasm through the phenylpropanoid pathway, transported into the cell wall and oxidised by peroxidases or laccases to phenoxy radicals that couple to form the lignin polymer. This study was conducted to characterise the lignin biosynthetic pathway in Norway spruce (Picea abies (L.) Karst.). We focused on the less well-known polymerisation stage, to identify the enzymes and the regulatory mechanisms that are involved. Available data for lignin biosynthesis in gymnosperms is scarce and, for example, the latest improvements in precursor biosynthesis have only been verified in herbaceous plants. Therefore, we also wanted to study in detail the roles of individual gene family members during developmental and stress-induced lignification, using EST sequencing and real-time RT-PCR. We used, as a model, a Norway spruce tissue culture line that produces extracellular lignin into the culture medium, and showed that lignin polymerisation in the tissue culture depends on peroxidase activity. We identified in the culture medium a significant NADH oxidase activity that could generate H2O2 for peroxidases. Two basic culture medium peroxidases were shown to have high affinity to coniferyl alcohol. Conservation of the putative substrate-binding amino acids was observed when the spruce peroxidase sequences were compared with other peroxidases with high affinity to coniferyl alcohol. We also used different peroxidase fractions to produce synthetic in vitro lignins from coniferyl alcohol; however, the linkage pattern of the suspension culture lignin could not be reproduced in vitro with the purified peroxidases, nor with the full complement of culture medium proteins. This emphasised the importance of the precursor radical concentration in the reaction zone, which is controlled by the cells through the secretion of both the lignin precursors and the oxidative enzymes to the apoplast. In addition, we identified basic peroxidases that were reversibly bound to the lignin precipitate. They could be involved, for example, in the oxidation of polymeric lignin, which is required for polymer growth. The dibenzodioxocin substructure was used as a marker for polymer oxidation in the in vitro polymerisation studies, as it is a typical substructure in wood lignin and in the suspension culture lignin. Using immunolocalisation, we found the structure mainly in the S2+S3 layers of the secondary cell walls of Norway spruce tracheids. The structure was primarily formed during the late phases of lignification. Contrary to the earlier assumptions, it appears to be a terminal structure in the lignin macromolecule. Most lignin biosynthetic enzymes are encoded for by several genes, all of which may not participate in lignin biosynthesis. In order to identify the gene family members that are responsible for developmental lignification, ESTs were sequenced from the lignin-forming tissue culture and developing xylem of spruce. Expression of the identified lignin biosynthetic genes was studied using real-time RT-PCR. Candidate genes for developmental lignification were identified by a coordinated, high expression of certain genes within the gene families in all lignin-forming tissues. However, such coordinated expression was not found for peroxidase genes. We also studied stress-induced lignification either during compression wood formation by bending the stems or after Heterobasidion annosum infection. Based on gene expression profiles, stress-induced monolignol biosynthesis appeared similar to the developmental process, and only single PAL and C3H genes were specifically up-regulated by stress. On the contrary, the up-regulated peroxidase genes differed between developmental and stress-induced lignification, indicating specific responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crickets have two tympanal membranes on the tibiae of each foreleg. Among several field cricket species of the genus Gryllus (Gryllinae), the posterior tympanal membrane (PTM) is significantly larger than the anterior membrane (ATM). Laser Doppler vibrometric measurements have shown that the smaller ATM does not respond as much as the PTM to sound. Hence the PTM has been suggested to be the principal tympanal acoustic input to the auditory organ. In tree crickets (Oecanthinae), the ATM is slightly larger than the PTM. Both membranes are structurally complex, presenting a series of transverse folds on their surface, which are more pronounced on the ATM than on the PTM. The mechanical response of both membranes to acoustic stimulation was investigated using microscanning laser Doppler vibrometry. Only a small portion of the membrane surface deflects in response to sound. Both membranes exhibit similar frequency responses, and move out of phase with each other, producing compressions and rarefactions of the tracheal volume backing the tympanum. Therefore, unlike field crickets, tree crickets may have four instead of two functional tympanal membranes. This is interesting in the context of the outstanding question of the role of spiracular inputs in the auditory system of tree crickets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variability in rainfall is known to be a major influence on the dynamics of tropical forests, especially rates and patterns of tree mortality. In tropical dry forests a number of contributing factors to tree mortality, including dry season fire and herbivory by large herbivorous mammals, could be related to rainfall patterns, while loss of water potential in trees during the dry season or a wet season drought could also result in enhanced rates of death. While tree mortality as influenced by severe drought has been examined in tropical wet forests there is insufficient understanding of this process in tropical dry forests. We examined these causal factors in relation to inter-annual differences in rainfall in causing tree mortality within a 50-ha Forest Dynamics Plot located in the tropical dry deciduous forests of Mudumalai, southern India, that has been monitored annually since 1988. Over a 19-year period (1988-2007) mean annual mortality rate of all stems >1 cm dbh was 6.9 +/- 4.6% (range = 1.5-17.5%); mortality rates broadly declined from the smaller to the larger size classes with the rates in stems >30 cm dbh being among the lowest recorded in tropical forest globally. Fire was the main agent of mortality in stems 1-5 cm dbh, elephant-herbivory in stems 5-10 cm dbh, and other natural causes in stems > 10 cm dbh. Elephant-related mortality did not show any relationship to rainfall. On the other hand, fire-related mortality was significantly negatively correlated to quantity of rainfall during the preceding year. Mortality due to other causes in the larger stem sizes was significantly negatively correlated to rainfall with a 2-3-year lag, suggesting that water deficit from mild or prolonged drought enhanced the risk of death but only with a time lag that was greater than similar lags in tree mortality observed in other forest types. In this respect, tropical dry forests growing in regions of high rainfall variability may have evolved greater resistance to rainfall deficit as compared to tropical moist or temperate forests but are still vulnerable to drought-related mortality.