942 resultados para Trapping
Resumo:
This report summarises work conducted by the QDPI, in partnership with the South Burdekin Water Board (SBWB) and the Burdekin Shire Council (BSC) between 2001 and 2003. The broad aim of the research was to assess the potential of native fish as biocontrol agents for noxious weeds, as part of an integrated program for managing water quality in the Burdekin Irrigation Area. A series of trials were conducted at, or using water derived from, the Sandy Creek Diversion near Groper Creek (lower Burdekin delta). Trials demonstrated that aquatic weeds play a positive role in trapping transient nutrients, until such time that weed growth becomes self-shading and weed dieback occurs, which releases stored nutrients and adversely affects water quality. Transient nutrient levels (av. TN<0.5mg/L; av. TP<0.1mg/L) found in the irrigation channel during the course of this research were substantially lower than expected, especially considering the intensive agriculture and sewage effluent discharge upstream from the study site. This confirms the need to consider the control of weeds rather than complete weed extermination when formulating management plans. However, even when low nutrient levels are available, there is competitive exploitation of habitat variables in the irrigation area leading to succession and eventual domination by certain weed species. During these trials, we have seen filamentous algae, phytoplankton, hyacinth and curled pondweed each hold competitive advantage at certain points. However without intervention, floating weeds, especially hyacinth, ultimately predominate in the Burdekin delta due to their fast propagation rate and their ability to out-shade submerged plants. We have highlighted the complexity of interactions in these highly disturbed ecosystems in that even if the more prevalent noxious weeds are contained, other weed species will exploit the vacant niche. This complexity places stringent requirements on the type of native fish that can be used as biocontrol agents. Of the seven fish species identified with herbivorous trophic niches, most target plankton or algae and do not have the physical capacity to directly eat the larger macrophytes of the delta. We do find however that following mechanical weed harvesting, inoculative releases of fish can slow the rate of hyacinth recolonisation. This occurs by mechanisms in addition to direct weed consumption, such as disturbing growth surfaces by grazing on attached biofilms. Predation by birds and water rats presents another impediment to the efficacy of large-scale releases of fish. However, alternative uses of fish in water quality management in the Burdekin irrigation area are discussed.
Resumo:
A pheromone-based trapping system will be developed for both A. lutescens and A. nitida to improve insecticide timing and to rationalise use.
Resumo:
Root-lesion nematodes (RLNs) are found on 75% of grain farms in southern Queensland (QLD) and northern New South Wales (NSW) and are significant pests. This project confirmed that biological suppression of RLNs occurs in soils, examined what organisms are involved and how growers might enhance suppressiveness of soils. Field trials, and glasshouse and laboratory bioassays of soils from fields with contrasting management practices, showed suppressiveness is favoured with less tillage, more stubble and continuous intensive cropping, particularly in the top 15cm of soil. Through extensive surveys key organisms, Pasteuria bacteria, nematode-trapping fungi and predatory nematodes were isolated and identified as being present.
Resumo:
The fisheries resources of the Bohle River and its small catchment area adjacent Townsville, north Queensland, were investigated through available literature, scientific research surveys and analysis of commercial and recreational catch and effort data. Research surveys produced a total of 4383 fish from the waters of the Bohle River during 1997-1998. These were classified into 104 fish species from 49 families. Gillnetting, cast netting, fish trapping and crab potting techniques were used in the estuarine waters of the Bohle River with freshwater reaches in the upper catchment surveyed by electrofishing. This range of survey techniques was used to estimate the relative abundance of ten commercially and recreationally important species: Barramundi (Lates calcarifer), king threadfin (Polydactylus macrochir), blue threadfin (Eleutheronema tetradactylum), mangrove jack (Lutjanus argentimaculatus), banded and spotted grunter (Pomadasys kaakan and Pomadasys argenteus), pikey and yellowfin bream (Acanthopagrus berda and Acanthopagrus australis), tilapia (Oreochromis spp.), jungle perch (Kuhlia rupestris) and mud crab (Scylla serrata). The results of each survey method are discussed with a focus on spatial and temporal patterns in diversity and catch rate.
Resumo:
The status of the exotic clerid beetle Opetiopalpus scutellaris Panzer has been unclear due to the ambiguous nature of the single previous Australian record. Recent pheromone trapping at grain stores in Western Australia indicate that O. scutellaris is locally naturalised within the Western Australian wheatbelt. It is considered likely that the trapped O. scutellaris specimens originated from surrounding areas rather than being directly associated with grain.
Resumo:
Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is a common stored grain pest for which a wide range of suitable resources has been recorded. These beetles are facultatively fungivorous and their resource range may extend to fungi associated with non-grain resources (e.g. cotton seed) and other decaying plant matter. Little is known with respect to fungi in terms of resource location by these beetles in the field. We, therefore, conducted a series of experiments in laboratory arenas, glasshouse cages and the field to determine how beetles respond to grain resources in relation to cotton seed (together with its lint stubble and associated fungal flora). Results from the tests conducted in relatively small arenas and cages in the laboratory and glasshouse reveal that the responses of T. castaneum adults to food resources were twice as strong when walking as when flying (as measured by the proportion of the released beetles that were trapped). Also, a clear preference for linted cotton seeds was evident in walking T. castaneum, especially in small-scale arenas in the laboratory, where at least 60% of beetles released preferred linted cotton seeds over wheat and sorghum. Similarly, in cages (1 m3) they responded five times more strongly to linted cotton seed than to conventional grain resources. However, this pattern was not consistent with those obtained from field trapping over 20 m and the beetles did not show any particular preference to any of the resources tested above. Our results suggest a focus on walking beetles in trapping studies for population estimations and, for developing effective food-based trapping lures, the potential use of active volatiles from the fungi associated with linted cotton seed. © 2012 Elsevier Ltd.
Resumo:
Southern Hemisphere plantation forestry has grown substantially over the past few decades and will play an increasing role in fibre production and carbon sequestration in future. The sustainability of these plantations is, however, increasingly under pressure from introduced pests. This pressure requires an urgent and matching increase in the speed and efficiency at which tools are developed to monitor and control these pests. To consider the potential role of semiochemicals to address the need for more efficient pest control in Southern Hemisphere plantations, particularly by drawing from research in other parts of the world. Semiochemical research in forestry has grown exponentially over the last 40 years but has been almost exclusively focussed on Northern Hemisphere forests. In these forests, semiochemicals have played an important role to enhance the efficiency of integrated pest management programmes. An analysis of semiochemical research from 1970 to 2010 showed a rapid increase over time. It also indicated that pheromones have been the most extensively studied type of semiochemical in forestry, contributing to 92% of the semiochemical literature over this period, compared with research on plant kairomones. This research has led to numerous applications in detection of new invasions, monitoring population levels and spread, in addition to controlling pests by mass trapping or disrupting of aggregation and mating signals. The value of semiochemicals as an environmentally benign and efficient approach to managing forest plantation pests in the Southern Hemisphere seems obvious. There is, however, a lack of research capacity and focus to optimally capture this opportunity. Given the pressure from increasing numbers of pests and reduced opportunities to use pesticides, there is some urgency to develop semiochemical research capacity.
Resumo:
Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.) are common cosmopolitan pests of stored grain and grain products. We evaluated the relative attraction of T.castaneum and R.dominica to wheat, sorghum and cotton seeds in the field, near grain storage facilities and well away from storages in southern and central Queensland using multiple trapping techniques. The results show that T.castaneum is more strongly attracted to linted cotton seed relative to wheat, whereas R.dominica did not respond to cotton seed at all and was attracted only to wheat. Significantly more adults of T.castaneum (10-15 times) were attracted to traps placed on the ground, near grain storage, than to equivalent traps that were suspended (1.5m above the ground) nearby. These results suggest that Tribolium beetles detect and respond to resources towards the end of their dispersal flight, after which they localize resources while walking. By contrast R.dominica was captured only in suspended traps, which suggests they fly directly onto resources as they localize them. The ability of both species to colonize and reproduce in isolated resource patches within the relatively short time of 1month is illustrated by the returns from the traps deployed in the field (at least 1km from the nearest stored grain) even though they caught only a few beetles. The results presented here provide novel insights about the resource location behaviours of both T.castaneum and R.dominica. In particular, the relationship of T.castaneum with non-cereal resources that are not conventionally associated with this species suggests an emphasis on these other resources in investigating the resource location behaviour of these beetles. This new perspective on the ecology of T. castaneum highlights the potential role of non-cereal resources (such as the lint on cotton seed) in the spread of grain pest infestations.
Resumo:
Context. Irregular plagues of house mice cause high production losses in grain crops in Australia. If plagues can be forecast through broad-scale monitoring or model-based prediction, then mice can be proactively controlled by poison baiting. Aims. To predict mouse plagues in grain crops in Queensland and assess the value of broad-scale monitoring. Methods. Regular trapping of mice at the same sites on the Darling Downs in southern Queensland has been undertaken since 1974. This provides an index of abundance over time that can be related to rainfall, crop yield, winter temperature and past mouse abundance. Other sites have been trapped over a shorter time period elsewhere on the Darling Downs and in central Queensland, allowing a comparison of mouse population dynamics and cross-validation of models predicting mouse abundance. Key results. On the regularly trapped 32-km transect on the Darling Downs, damaging mouse densities occur in 50% of years and a plague in 25% of years, with no detectable increase in mean monthly mouse abundance over the past 35 years. High mouse abundance on this transect is not consistently matched by high abundance in the broader area. Annual maximum mouse abundance in autumn–winter can be predicted (R2 = 57%) from spring mouse abundance and autumn–winter rainfall in the previous year. In central Queensland, mouse dynamics contrast with those on the Darling Downs and lack the distinct annual cycle, with peak abundance occurring in any month outside early spring.Onaverage, damaging mouse densities occur in 1 in 3 years and a plague occurs in 1 in 7 years. The dynamics of mouse populations on two transects ~70 km apart were rarely synchronous. Autumn–winter rainfall can indicate mouse abundance in some seasons (R2 = ~52%). Conclusion. Early warning of mouse plague formation in Queensland grain crops from regional models should trigger farm-based monitoring. This can be incorporated with rainfall into a simple model predicting future abundance that will determine any need for mouse control. Implications. A model-based warning of a possible mouse plague can highlight the need for local monitoring of mouse activity, which in turn could trigger poison baiting to prevent further mouse build-up.
Resumo:
This thesis integrates real-time feedback control into an optical tweezers instrument. The goal is to reduce the variance in the trapped bead s position, -effectively increasing the trap stiffness of the optical tweezers. Trap steering is done with acousto-optic deflectors and control algorithms are implemented with a field-programmable gate array card. When position clamp feedback control is on, the effective trap stiffness increases 12.1-times compared to the stiffness without control. This allows improved spatial control over trapped particles without increasing the trapping laser power.
Resumo:
Previously regarded as minor nuisance pests, psocids belonging to the genus Liposcelis now pose a major problem for the effective protection of stored products worldwide. Here we examine the apparent biological and operational reasons behind this phenomenon and why conventional pest management seems to be failing. We investigate what is known about the biology, behavior, and population dynamics of major pest species to ascertain their strengths, and perhaps find weaknesses, as a basis for a rational pest management strategy. We outline the contribution of molecular techniques to clarifying species identification and understanding genetic diversity. We discuss progress in sampling and trapping and our comprehension of spatial distribution of these pests as a foundation for developing management strategies. The effectiveness of various chemical treatments and the availability and potential of nonchemical control methods are critically examined. Finally, we identify research gaps and suggest future directions for research.
Resumo:
Pressurised hot water extraction (PHWE) exploits the unique temperature-dependent solvent properties of water minimising the use of harmful organic solvents. Water is environmentally friendly, cheap and easily available extraction medium. The effects of temperature, pressure and extraction time in PHWE have often been studied, but here the emphasis was on other parameters important for the extraction, most notably the dimensions of the extraction vessel and the stability and solubility of the analytes to be extracted. Non-linear data analysis and self-organising maps were employed in the data analysis to obtain correlations between the parameters studied, recoveries and relative errors. First, pressurised hot water extraction (PHWE) was combined on-line with liquid chromatography-gas chromatography (LC-GC), and the system was applied to the extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) in sediment. The method is of superior sensitivity compared with the traditional methods, and only a small 10 mg sample was required for analysis. The commercial extraction vessels were replaced by laboratory-made stainless steel vessels because of some problems that arose. The performance of the laboratory-made vessels was comparable to that of the commercial ones. In an investigation of the effect of thermal desorption in PHWE, it was found that at lower temperatures (200ºC and 250ºC) the effect of thermal desorption is smaller than the effect of the solvating property of hot water. At 300ºC, however, thermal desorption is the main mechanism. The effect of the geometry of the extraction vessel on recoveries was studied with five specially constructed extraction vessels. In addition to the extraction vessel geometry, the sediment packing style and the direction of water flow through the vessel were investigated. The geometry of the vessel was found to have only minor effect on the recoveries, and the same was true of the sediment packing style and the direction of water flow through the vessel. These are good results because these parameters do not have to be carefully optimised before the start of extractions. Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) were compared as trapping techniques for PHWE. LLE was more robust than SPE and it provided better recoveries and repeatabilities than did SPE. Problems related to blocking of the Tenax trap and unrepeatable trapping of the analytes were encountered in SPE. Thus, although LLE is more labour intensive, it can be recommended over SPE. The stabilities of the PAHs in aqueous solutions were measured using a batch-type reaction vessel. Degradation was observed at 300ºC even with the shortest heating time. Ketones and quinones and other oxidation products were observed. Although the conditions of the stability studies differed considerably from the extraction conditions in PHWE, the results indicate that the risk of analyte degradation must be taken into account in PHWE. The aqueous solubilities of acenaphthene, anthracene and pyrene were measured, first below and then above the melting point of the analytes. Measurements below the melting point were made to check that the equipment was working, and the results were compared with those obtained earlier. Good agreement was found between the measured and literature values. A new saturation cell was constructed for the solubility measurements above the melting point of the analytes because the flow-through saturation cell could not be used above the melting point. An exponential relationship was found between the solubilities measured for pyrene and anthracene and temperature.
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
Bactrocera frauenfeldi (Schiner), the ‘mango fruit fly’, is a horticultural pest originating from the Papua New Guinea region. It was first detected in Australia on Cape York Peninsula in north Queensland in 1974 and had spread to Cairns by 1994 and Townsville by 1997. Bactrocera frauenfeldi has not been recorded further south since then despite its invasive potential, an absence of any controls and an abundance of hosts in southern areas. Analysis of cue-lure trapping data from 1997 to 2012 in relation to environmental variables shows that the distribution of B. frauenfeldi in Queensland correlates to locations with a minimum temperature for the coldest month >13.2°C, annual temperature range <19.3°C, mean temperature of the driest quarter >20.2°C, precipitation of the wettest month >268 mm, precipitation of the wettest quarter >697 mm, temperature seasonality <30.9°C (i.e. lower temperature variability) and areas with higher human population per square kilometre. Annual temperature range was the most important variable in predicting this species' distribution. Predictive distribution maps based on an uncorrelated subset of these variables reasonably reflected the current distribution of this species in northern Australia and predicted other areas in the world potentially at risk from invasion by this species. This analysis shows that the distribution of B. frauenfeldi in Australia is correlated to certain environmental variables that have most likely limited this species' spread southward in Queensland. This is of importance to Australian horticulture in demonstrating that B. frauenfeldi is unlikely to establish in horticultural production areas further south than Townsville.
Resumo:
Queensland fruit flies Bactrocera tryoni and B. neohumeralis are considered major quarantine pests of tomato, a major crop in the horticultural production district around Bowen, North Queensland, Australia. Preharvest and/or postharvest treatments are required to meet the market access requirements of both domestic and international trading partners. The suspension from use of dimethoate and fenthion, the two insecticides used for fruit fly control, has resulted in the loss of both pre and postharvest uses in fresh tomato. Research undertaken quantitatively at Bowen evaluated the effectiveness of pre-harvest production systems without specific fruit fly controls and postharvest mitigation measures in reducing the risk of fruit fly infestation in tomato. A district-wide trapping using cue-lure baited traps was undertaken to determine fruit fly seasonal patterns in relation to the cropping seasons. A total of 17,626 field-harvested and 11,755 pack-house tomatoes were sampled from ten farms over three cropping seasons (2006-2009). The fruit were incubated and examined for fruit fly infestation. No fruit fly infested fruit were recorded over the three seasons in either the field or the pack-house samples. Statistical analyses showed that upper infestation levels were extremely low (between 0.025 and 0.062%) at the 95% confidence level. The trap catches showed a seasonal pattern in fruit fly activity, with low numbers during the autumn and winter months, rising slightly in spring and peaking in summer. This seasonal pattern was similar over the four seasons. The main two species of fruit fly caught were B. tryoni and B. neohumeralis. Based on the results, it is clear that the risk of fruit fly infestation is extremely low under the current production systems in the Bowen region.