931 resultados para Transformada wavelet discreta


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este material traz a definição de matemática discreta, tendo como objetivo desenvolver e complementar o ferramental matemático básico do aluno para o aprendizado da computação. Apresenta a diferença de matemática contínua e matemática discreta. As disciplinas de Matemática Discreta estão presentes em todos os cursos de computação, devido à sua importância para quase todas as áreas da computação, principalmente construção de algoritmos, linguagens de programação e compiladores. A matemática como um todo oferece ferramentas para modelar e solucionar diversos problemas do mundo real.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the many types of noise observed in seismic land acquisition there is one produced by surface waves called Ground Roll that is a particular type of Rayleigh wave which characteristics are high amplitude, low frequency and low velocity (generating a cone with high dip). Ground roll contaminates the relevant signals and can mask the relevant information, carried by waves scattered in deeper regions of the geological layers. In this thesis, we will present a method that attenuates the ground roll. The technique consists in to decompose the seismogram in a basis of curvelet functions that are localized in time, in frequency, and also, incorporate an angular orientation. These characteristics allow to construct a curvelet filter that takes in consideration the localization of denoise in scales, times and angles in the seismogram. The method was tested with real data and the results were very good

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet coding is an efficient technique to overcome the multipath fading effects, which are characterized by fluctuations in the intensity of the transmitted signals over wireless channels. Since the wavelet symbols are non-equiprobable, modulation schemes play a significant role in the overall performance of wavelet systems. Thus the development of an efficient design method is crucial to obtain modulation schemes suitable for wavelet systems, principally when these systems employ wavelet encoding matrixes of great dimensions. In this work, it is proposed a design methodology to obtain sub-optimum modulation schemes for wavelet systems over Rayleigh fading channels. In this context, novels signal constellations and quantization schemes are obtained via genetic algorithm and mathematical tools. Numerical results obtained from simulations show that the wavelet-coded systems derived here have very good performance characteristics over fading channels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet coding has emerged as an alternative coding technique to minimize the fading effects of wireless channels. This work evaluates the performance of wavelet coding, in terms of bit error probability, over time-varying, frequency-selective multipath Rayleigh fading channels. The adopted propagation model follows the COST207 norm, main international standards reference for GSM, UMTS, and EDGE applications. The results show the wavelet coding s efficiency against the inter symbolic interference which characterizes these communication scenarios. This robustness of the presented technique enables its usage in different environments, bringing it one step closer to be applied in practical wireless communication systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionospheric effect is one of the major errors in GPS data processing over long baselines. As a dispersive medium, it is possible to compute its influence on the GPS signal with the ionosphere-free linear combination of L1 and L2 observables, requiring dual-frequency receivers. In the case of single-frequency receivers, ionospheric effects are either neglected or reduced by using a model. In this paper, an alternative for single-frequency users is proposed. It involves multiresolution analysis (MRA) using a wavelet analysis of the double-difference observations to remove the short- and medium-scale ionosphere variations and disturbances, as well as some minor tropospheric effects. Experiments were carried out over three baseline lengths from 50 to 450 km, and the results provided by the proposed method were better than those from dual-frequency receivers. The horizontal root mean square was of about 0.28 m (1 sigma).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wavelet transform is used to reduce the high frequency multipath of pseudorange and carrier phase GPS double differences (DDs). This transform decomposes the DD signal, thus separating the high frequencies due to multipath effects. After the decomposition, the wavelet shrinkage is performed by thresholding to eliminate the high frequency component. Then the signal can be reconstructed without the high frequency component. We show how to choose the best threshold. Although the high frequency multipath is not the main multipath error component, its correction provides improvements of about 30% in pseudorange average residuals and 24% in carrier phases. The results also show that the ambiguity solutions become more reliable after correcting the high frequency multipath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we study the application of spectral representations to the solution of problems in seismic exploration, the synthesis of fractal surfaces and the identification of correlations between one-dimensional signals. We apply a new approach, called Wavelet Coherency, to the study of stratigraphic correlation in well log signals, as an attempt to identify layers from the same geological formation, showing that the representation in wavelet space, with introduction of scale domain, can facilitate the process of comparing patterns in geophysical signals. We have introduced a new model for the generation of anisotropic fractional brownian surfaces based on curvelet transform, a new multiscale tool which can be seen as a generalization of the wavelet transform to include the direction component in multidimensional spaces. We have tested our model with a modified version of the Directional Average Method (DAM) to evaluate the anisotropy of fractional brownian surfaces. We also used the directional behavior of the curvelets to attack an important problem in seismic exploration: the atenuation of the ground roll, present in seismograms as a result of surface Rayleigh waves. The techniques employed are effective, leading to sparse representation of the signals, and, consequently, to good resolutions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In general, an inverse problem corresponds to find a value of an element x in a suitable vector space, given a vector y measuring it, in some sense. When we discretize the problem, it usually boils down to solve an equation system f(x) = y, where f : U Rm ! Rn represents the step function in any domain U of the appropriate Rm. As a general rule, we arrive to an ill-posed problem. The resolution of inverse problems has been widely researched along the last decades, because many problems in science and industry consist in determining unknowns that we try to know, by observing its effects under certain indirect measures. Our general subject of this dissertation is the choice of Tykhonov´s regulaziration parameter of a poorly conditioned linear problem, as we are going to discuss on chapter 1 of this dissertation, focusing on the three most popular methods in nowadays literature of the area. Our more specific focus in this dissertation consists in the simulations reported on chapter 2, aiming to compare the performance of the three methods in the recuperation of images measured with the Radon transform, perturbed by the addition of gaussian i.i.d. noise. We choosed a difference operator as regularizer of the problem. The contribution we try to make, in this dissertation, mainly consists on the discussion of numerical simulations we execute, as is exposed in Chapter 2. We understand that the meaning of this dissertation lays much more on the questions which it raises than on saying something definitive about the subject. Partly, for beeing based on numerical experiments with no new mathematical results associated to it, partly for being about numerical experiments made with a single operator. On the other hand, we got some observations which seemed to us interesting on the simulations performed, considered the literature of the area. In special, we highlight observations we resume, at the conclusion of this work, about the different vocations of methods like GCV and L-curve and, also, about the optimal parameters tendency observed in the L-curve method of grouping themselves in a small gap, strongly correlated with the behavior of the generalized singular value decomposition curve of the involved operators, under reasonably broad regularity conditions in the images to be recovered

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier B.V. All rights reserved.