965 resultados para Toll-Like Receptor 9


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported that bacterial products such as LPS and CpG DNA down-modulated cell surface levels of the Colony Stimulating Factor (CSF)-1 receptor (CSF-1R) on primary murine macrophages in an all-or-nothing manner. Here we show that the ability of bacterial products to down-modulate the CSF-IR rendered bone marrow-derived macrophages (BMM) unresponsive to CSF-1 as assessed by Akt and ERK 1/2 phosphorylation. Using toll-like receptor (th-)9 as a model CSF-1-repressed gene, we show that LPS induced tlr9 expression in BMM only when CSF-1 was present, suggesting that LPS relieves CSF-1-mediated inhibition to induce gene expression. Using cDNA microarrays, we identified a cluster of similarly CSF-1 repressed genes in BMM. By real time PCR we confirmed that the expression of a selection of these genes, including integral membrane protein 2B (itm2b), receptor activity-modifying protein 2 (ramp2) and macrophage-specific gene 1 (mpg-1), were repressed by CSF-1 and were induced by LPS only in the presence of CSF-1. This pattern of gene regulation was also apparent in thioglycollate-elicited peritoneal macrophages (TEPM). LPS also counteracted CSF-1 action to induce mRNA expression of a number of transcription factors including interferon consensus sequence binding protein 1 (Icsbp1), suggesting that this mechanism leads to transcriptional reprogramming in macrophages. Since the majority of in vitro studies on macrophage biology do not include CSF-1, these genes represent a set of previously uncharacterised LPS-inducible genes. This study identifies a new mechanism of macrophage activation, in which LPS (and other toll-like receptor agonists) regulate gene expression by switching off the CSF-1R signal. This finding also provides a biological relevance to the well-documented ability of macrophage activators to down-modulate surface expression of the CSF-1R. (C) 2005 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human papillomavirus-like particles (HPV-VLP) are a candidate vaccine for prevention of HPV infection, and also are a candidate for an immunogenic delivery system for incorporated antigen. VLP activate in vitro generated dendritic cells (DC) but not Langerhans cells (LC); however, the mechanism of this activation is unknown. We have shown that uptake and activation of DC by VLP involves proteoglycan receptors and can be inhibited by heparin. Heparin has been shown to activate DC by signalling through Toll-like receptor 4 (TLR4) and nuclear factor (NF)-kappaB. The pathway of DC activation by VLP was further investigated in the present study. Exposure to VLP induced costimulatory molecule expression, RelB translocation and IL-10 production by DC but not by LC. The lack of LC activation was reversible when TGF-beta was removed from the LC medium. VLP-induced induction of costimulatory molecule expression, RelB activation and cytokine secretion by DC was blocked by inhibition of NF-kappaB activation, heparin or TLR4 mAb. The data provide evidence that HPV-VLP signal DC through a pathway involving proteoglycan receptors, TLR4 and NF-kappaB, and shed light on the mechanism by which VLP stimulate immunity in the absence of adjuvants in vivo. LC may resist activation in normal epithelium abundant in TGF-beta, but not in situations in which TGF-beta concentrations are reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proliferation of legume nodule primordia is controlled by shoot-root signaling known as autoregulation of nodulation (AON). Mutants defective in AON show supernodulation and increased numbers of lateral roots. Here, we demonstrate that AON in soybean is controlled by the receptor-like protein kinase GmNARK (Glycine max nodule autoregulation receptor kinase), similar to Arabidopsis CLAVATA1 (CLV1). Whereas CLV1 functions in a protein complex controlling stem cell proliferation by short-distance signaling in shoot apices, GmNARK expression in the leaf has a major role in long-distance communication with nodule and lateral root primordia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcitonin receptor like-receptor is a family B G-protein coupled receptor (GPCR). It requires receptor activity modifying protein (RAMP) 1 to give a calcitonin gene-related peptide (CGRP) receptor. Little is known of how members of this receptor family function. Proline residues often form important kinks in alpha-helices. Therefore, all proline residues within the transmembrane helices of the receptor (Pro241, Pro244 in helix 4, Pro275 in helix 5, Pro321 and Pro331 in helix 6) were mutated to alanine. Pro241 Pro275, and Pro321 are highly conserved throughout all family B GPCRs. The binding of CGRP and its ability to stimulate cAMP production were investigated in mutant and wild-type receptors after transient transfection into COS-7 cells with RAMP1. The P321A mutation significantly decreased the pEC(50) for CGRP and reduced its affinity but did not change cell-surface expression. Antagonist binding [CGRP(8-37) and 1-piperidinecarboxamide N-[2-[[5amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quina zolinyl) (BIBN4096BS)] was little altered by the mutation. Adrenomedullin-mediated signaling was disrupted when P321A was coexpressed with RAMP1, RAMP2, or RAMP3. The P331A mutant produced a moderate reduction in CGRP binding and receptor activation. Mutation of the other residues had no effect on receptor function. Thus, Pro321 and Pro331 are required for agonist binding and receptor activation. Modeling suggested that Pro321 induces a bend in helix 6, bringing its C terminus near that of helix 3, as seen in many family A GPCRs. This is abolished in P321A. P321A-I325P predicted to restore this conformation, showed wild-type activation. Modeling can also rationalize the effects of transmembrane proline mutants previously reported for another family B GPCR, the VPAC(1) receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The calcitonin receptor-like receptor (CRLR) and specific receptor activity modifying proteins (RAMPs) together form receptors for calcitonin gene-related peptide (CGRP) and/or adrenomedullin in transfected cells. 2. There is less evidence that innate CGRP and adrenomedullin receptors are formed by CRLR/RAMP combinations. We therefore examined whether CGRP and/or adrenomedullin binding correlated with CRLR and RAMP mRNA expression in human and rat cell lines known to express these receptors. Specific human or rat CRLR antibodies were used to examine the presence of CRLR in these cells. 3. We confirmed CGRP subtype 1 receptor (CGRP(1)) pharmacology in SK-N-MC neuroblastoma cells. L6 myoblast cells expressed both CGRP(1) and adrenomedullin receptors whereas Rat-2 fibroblasts expressed only adrenomedullin receptors. In contrast we could not confirm CGRP(2) receptor pharmacology for Col-29 colonic epithelial cells, which, instead were CGRP(1)-like in this study. 4. L6, SK-N-MC and Col-29 cells expressed mRNA for RAMP1 and RAMP2 but Rat-2 fibroblasts had only RAMP2. No cell line had detectable RAMP3 mRNA. 5. SK-N-MC, Col-29 and Rat-2 fibroblast cells expressed CRLR mRNA. By contrast, CRLR mRNA was undetectable by Northern analysis in one source of L6 cells. Conversely, a different source of L6 cells had mRNA for CRLR. All of the cell lines expressed CRLR protein. Thus circumstances where CRLR mRNA is apparently absent by Northern analysis do not exclude the presence of this receptor. 6. These data strongly support CRLR, together with appropriate RAMPs as binding sites for CGRP and adrenomedullin in cultured cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced aCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced aCGRP binding. These residues form a hydrophobic cluster within an area defined as the "minor groove" of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of aCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on aCGRP binding and cAMP production; they are likely to indirectly influence the binding site for aCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired aCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcitonin receptor-like receptor (CLR) acts as a receptor for the calcitonin gene-related peptide (CGRP) but in order to recognize CGRP, it must form a complex with an accessory protein, receptor activity modifying protein 1 (RAMP1). Identifying the protein/protein and protein/ligand interfaces in this unusual complex would aid drug design. The role of the extreme N-terminus of CLR (Glu23-Ala60) was examined by an alanine scan and the results were interpreted with the help of a molecular model. The potency of CGRP at stimulating cAMP production was reduced at Leu41Ala, Gln45Ala, Cys48Ala and Tyr49Ala; furthermore, CGRP-induced receptor internalization at all of these receptors was also impaired. Ile32Ala, Gly35Ala and Thr37Ala all increased CGRP potency. CGRP specific binding was abolished at Leu41Ala, Ala44Leu, Cys48Ala and Tyr49Ala. There was significant impairment of cell surface expression of Gln45Ala, Cys48Ala and Tyr49Ala. Cys48 takes part in a highly conserved disulfide bond and is probably needed for correct folding of CLR. The model suggests that Gln45 and Tyr49 mediate their effects by interacting with RAMP1 whereas Leu41 and Ala44 are likely to be involved in binding CGRP. Ile32, Gly35 and Thr37 form a separate cluster of residues which modulate CGRP binding. The results from this study may be applicable to other family B GPCRs which can associate with RAMPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (-\-)) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(-/-) macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(-/-) macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(-/-) macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (-/-) mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antecedente: La infección por el virus sincitial respiratorio (VSR) representa una elevada morbimortalidad, y en algunos casos necesidad de manejo en unidades de cuidado intensivo pediátrico (UCIP). La respuesta inmunológica influye de manera directa en la expresión de la severidad y pronóstico de los pacientes con infección respiratoria. Metodología: Estudio de una cohorte retrospectiva de pacientes con infección respiratoria grave secundaria a VSR, sin historia de inmunodeficiencia, atendidos en la UCIP del Hospital Universitario Clínica San Rafael. Se realizó análisis descriptivoglobaly de acuerdo a la categorización de las prueba de IgG. Resultados: De 188 pacientes que ingresaron a la UCIP, 13% presentaron infección por VSR (24), con una edad promedio de 7,3 (DE=3,6) meses. Pertenecían al sexo masculino79,83%. Se encontró que 12,5% tenían un valor de IgGbajo para su edad, 58,33% tenían valores en límite inferior y el 29,17% dentro de rangos normales para su edad. En los pacientes con IgG baja, fue mayor la presentación de choque séptico que no responde a líquidos (100 vs 92 vs 86%), la mediana de días de ventilación mecánica fue mayor (8 vs 6 vs 5 respectivamente), así como la mortalidad (67 vs 7,1 vs 0%). Conclusión: Nuestra serie encontró que aquellos pacientes con niveles bajos o valores en el límite inferior de IgG sérica tuvieron mayor compromiso sistémico, mayor duración de ventilación mecánica y mayor mortalidad. Se necesitan estudios prospectivos que relaciones niveles bajos de IgG con severidad y pronostico en estos pacientes con infección grave por VSR.