983 resultados para Toda lattice hierarchy
Resumo:
A family of 16 isomolecular salts (3-XpyH)(2)[MX'(4)] (3-XpyH=3-halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X'=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X-ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non-covalent interactions: N-H center dot center dot center dot X'-M hydrogen bonds, C-X center dot center dot center dot X'-M halogen bonds and pi-pi stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C-X center dot center dot center dot X'-M halogen bonds, whereas an analogous change of the inorganic halogen (X') weakens both halogen bonds and N-H center dot center dot center dot X'-M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C-F center dot center dot center dot X'-M) halogen bonds are absent. The structure is directed by N-H center dot center dot center dot X'-M hydrogen bonds and pi-stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X'), long (weak) C-X center dot center dot center dot X'-M interactions are observed with type I halogen-halogen interaction geometries (C-X center dot center dot center dot X' approximate to X center dot center dot center dot X'-M approximate to 155 degrees), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X'), stronger halogen bonds are formed with a type II halogen-halogen interaction geometry (C-X center dot center dot center dot X' approximate to 180 degrees; X center dot center dot center dot X'-M approximate to 110 degrees) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.
Resumo:
In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew–Burke–Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.
Resumo:
Abstract. This paper presents the User-Intimate Requirements Hierarchy Resolution Framework (UI-REF) based on earlier work (Badii 1997-2008) to optimise the requirements engineering process particularly to support userintimate interactive systems co-design. The stages of the UI- EF framework for requirements resolution-and-prioritisation are described. UI-REF has been established to ensure that the most-deeply-valued needs of the majority of stakeholders are elicited and ranked, and the root rationale for requirements evolution is trace-able and contextualised so as to help resolve stakeholder conflicts. UI-REF supports the dynamically evolving requirements of the users in the context of digital economy as under-pinned by online service provisioning. Requirements prioritisation in UI-REF is fully resolved while a promotion path for lower priority requirements is delineated so as to ensure that as the requirements evolve so will their resolution and prioritisation.
Resumo:
Stochastic Diffusion Search is an efficient probabilistic bestfit search technique, capable of transformation invariant pattern matching. Although inherently parallel in operation it is difficult to implement efficiently in hardware as it requires full inter-agent connectivity. This paper describes a lattice implementation, which, while qualitatively retaining the properties of the original algorithm, restricts connectivity, enabling simpler implementation on parallel hardware. Diffusion times are examined for different network topologies, ranging from ordered lattices, over small-world networks to random graphs.
Resumo:
DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.
Resumo:
The ability to run General Circulation Models (GCMs) at ever-higher horizontal resolutions has meant that tropical cyclone simulations are increasingly credible. A hierarchy of atmosphere-only GCMs, based on the Hadley Centre Global Environmental Model (HadGEM1), with horizontal resolution increasing from approximately 270km to 60km (at 50N), is used to systematically investigate the impact of spatial resolution on the simulation of global tropical cyclone activity, independent of model formulation. Tropical cyclones are extracted from ensemble simulations and reanalyses of comparable resolutions using a feature-tracking algorithm. Resolution is critical for simulating storm intensity and convergence to observed storm intensities is not achieved with the model hierarchy. Resolution is less critical for simulating the annual number of tropical cyclones and their geographical distribution, which are well captured at resolutions of 135km or higher, particularly for Northern Hemisphere basins. Simulating the interannual variability of storm occurrence requires resolutions of 100km or higher; however, the level of skill is basin dependent. Higher resolution GCMs are increasingly able to capture the interannual variability of the large-scale environmental conditions that contribute to tropical cyclogenesis. Different environmental factors contribute to the interannual variability of tropical cyclones in the different basins: in the North Atlantic basin the vertical wind shear, potential intensity and low-level absolute vorticity are dominant, while in the North Pacific basins mid-level relative humidity and low-level absolute vorticity are dominant. Model resolution is crucial for a realistic simulation of tropical cyclone behaviour, and high-resolution GCMs are found to be valuable tools for investigating the global location and frequency of tropical cyclones.
Resumo:
Above a critical chain length, where oligomers contain five or more recognition units, apparently infinite donor–acceptor polypseudorotaxanes are formed in the solid state. X-ray crystallographic analyses of three different examples have shown that although the oligomeric chains are undoubtedly discrete and monodisperse, they nevertheless appear to be infinite in the crystal.