988 resultados para Tissue function
Resumo:
OBJECTIVE: To evaluate the expression of the 5-hydroxytryptamine 4 (5-HT4) receptor subtype and investigate the modulating function of those receptors on contractility in intestinal tissues obtained from horses without gastrointestinal tract disease. SAMPLE POPULATION: Smooth muscle preparations from the duodenum, ileum, and pelvic flexure collected immediately after slaughter of 24 horses with no history or signs of gastrointestinal tract disease. PROCEDURES: In isometric organ baths, the contractile activities of smooth muscle preparations in response to 5-hydroxytryptamine and electric field stimulation were assessed; the effect of tegaserod alone or in combination with 5-hydroxytryptamine on contractility of intestinal specimens was also investigated. Presence and distribution of 5-HT4 receptors in intestinal tissues and localization on interstitial cells of Cajal were examined by use of an immunofluorescence technique. RESULTS: Widespread 5-HT4 receptor immunoreactivity was observed in all intestinal smooth muscle layers; 5-HT4 receptors were absent from the myenteric plexus and interstitial cells of Cajal. In electrical field-stimulated tissue preparations of duodenum and pelvic flexure, tegaserod increased the amplitude of smooth muscle contractions in a concentration-dependent manner. Preincubation with tegaserod significantly decreased the basal tone of the 5-HT-evoked contractility in small intestine specimens, compared with the effect of 5-HT alone, thereby confirming that tegaserod was acting as a partial agonist. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, 5-HT4 receptors on smooth muscle cells appear to be involved in the contractile response of the intestinal tract to 5-hydroxytryptamine. Results suggest that tegaserod may be useful for treatment of reduced gastrointestinal tract motility in horses.
Resumo:
Standard methods for the estimation of the postmortem interval (PMI, time since death), based on the cooling of the corpse, are limited to about 48 h after death. As an alternative, noninvasive postmortem observation of alterations of brain metabolites by means of (1)H MRS has been suggested for an estimation of the PMI at room temperature, so far without including the effect of other ambient temperatures. In order to study the temperature effect, localized (1)H MRS was used to follow brain decomposition in a sheep brain model at four different temperatures between 4 and 26°C with repeated measurements up to 2100 h postmortem. The simultaneous determination of 25 different biochemical compounds at each measurement allowed the time courses of concentration changes to be followed. A sudden and almost simultaneous change of the concentrations of seven compounds was observed after a time span that decreased exponentially from 700 h at 4°C to 30 h at 26°C ambient temperature. As this represents, most probably, the onset of highly variable bacterial decomposition, and thus defines the upper limit for a reliable PMI estimation, data were analyzed only up to this start of bacterial decomposition. As 13 compounds showed unequivocal, reproducible concentration changes during this period while eight showed a linear increase with a slope that was unambiguously related to ambient temperature. Therefore, a single analytical function with PMI and temperature as variables can describe the time courses of metabolite concentrations. Using the inverse of this function, metabolite concentrations determined from a single MR spectrum can be used, together with known ambient temperatures, to calculate the PMI of a corpse. It is concluded that the effect of ambient temperature can be reliably included in the PMI determination by (1)H MRS.
Resumo:
Mesenchymal stromal cells (MSCs), which reside within various tissues, are utilized in the engineering of cartilage tissue. Dexamethasone (DEX)--a synthetic glucocorticoid--is almost invariably applied to potentiate the growth-factor-induced chondrogenesis of MSCs in vitro, albeit that this effect has been experimentally demonstrated only for transforming-growth-factor-beta (TGF-β)-stimulated bone-marrow-derived MSCs. Clinically, systemic glucocorticoid therapy is associated with untoward side effects (e.g., bone loss and increased susceptibility to infection). Hence, the use of these agents should be avoided or limited. We hypothesize that the influence of DEX on the chondrogenesis of MSCs depends upon their tissue origin and microenvironment [absence or presence of an extracellular matrix (ECM)], as well as upon the nature of the growth factor. We investigated its effects upon the TGF-β1- and bone-morphogenetic-protein 2 (BMP-2)-induced chondrogenesis of MSCs as a function of tissue source (bone marrow vs. synovium) and microenvironment [cell aggregates (no ECM) vs. explants (presence of a natural ECM)]. In aggregates of bone-marrow-derived MSCs, DEX enhanced TGF-β1-induced chondrogenesis by an up-regulation of cartilaginous genes, but had little influence on the BMP-2-induced response. In aggregates of synovial MSCs, DEX exerted no remarkable effect on either TGF-β1- or BMP-2-induced chondrogenesis. In synovial explants, DEX inhibited BMP-2-induced chondrogenesis almost completely, but had little impact on the TGF-β1-induced response. Our data reveal that steroids are not indispensable for the chondrogenesis of MSCs in vitro. Their influence is context dependent (tissue source of the MSCs, their microenvironment and the nature of the growth-factor). This finding has important implications for MSC based approaches to cartilage repair.
Resumo:
Migrating lymphocytes acquire a polarized phenotype with a leading and a trailing edge, or uropod. Although in vitro experiments in cell lines or activated primary cell cultures have established that Rho-p160 coiled-coil kinase (ROCK)-myosin II-mediated uropod contractility is required for integrin de-adhesion on two-dimensional surfaces and nuclear propulsion through narrow pores in three-dimensional matrices, less is known about the role of these two events during the recirculation of primary, nonactivated lymphocytes. Using pharmacological antagonists of ROCK and myosin II, we report that inhibition of uropod contractility blocked integrin-independent mouse T cell migration through narrow, but not large, pores in vitro. T cell crawling on chemokine-coated endothelial cells under shear was severely impaired by ROCK inhibition, whereas transendothelial migration was only reduced through endothelial cells with high, but not low, barrier properties. Using three-dimensional thick-tissue imaging and dynamic two-photon microscopy of T cell motility in lymphoid tissue, we demonstrated a significant role for uropod contractility in intraluminal crawling and transendothelial migration through lymph node, but not bone marrow, endothelial cells. Finally, we demonstrated that ICAM-1, but not anatomical constraints or integrin-independent interactions, reduced parenchymal motility of inhibitor-treated T cells within the dense lymphoid microenvironment, thus assigning context-dependent roles for uropod contraction during lymphocyte recirculation.
Resumo:
The relevance of tissue oxygenation in the pathogenesis of organ dysfunction during sepsis is controversial. We compared oxygen transport, lactate metabolism, and mitochondrial function in pigs with septic shock, cardiogenic shock, or hypoxic hypoxia.
Resumo:
The objective was to study changes in plasma leptin concentration parallel to changes in the gene expression of lipogenic- and lipolytic-related genes in adipose tissue of dairy cows around parturition. Subcutaneous fat biopsies were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. Blood samples were assayed for concentrations of leptin and non-esterified fatty acids (NEFA). Subcutaneous adipose tissue was analysed for mRNA abundance by real-time qRT-PCR encoding for leptin, adiponectin receptor 1 (AdipoR1), adiponectin receptor 2 (AdipoR2), hormones-sensitive lipase (HSL), perilipin (PLIN), lipoprotein lipase (LPL), acyl-CoA synthase long-chain family member 1 (ACSL1), acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN) and glycerol-3-phosphate dehydrogenase 2 (GPD2). Body weight and body condition score of the cows were lower after parturition than before parturition. The calculated energy balance was negative in week 1 and 5 p.p., with higher negative energy balance in week 1 p.p. compared with that in week 5 p.p. On day 1 p.p., highest concentrations of NEFA (353.3 mumol/l) were detected compared with the other biopsy time-points (210.6 and 107.7 mumol/l, in week 8 a.p., and week 5 p.p. respectively). Reduced plasma concentrations of leptin during p.p. when compared with a.p. would favour increasing metabolic efficiency and energy conservation for mammary function and reconstitution of body reserves. Lower mRNA abundance of ACC and FASN expression on day 1 p.p. compared with other biopsy time-points suggests an attenuation of fatty acid synthesis in subcutaneous adipose tissue shortly after parturition. Gene expression of AdipoR1, AdipoR2, HSL, PLIN, LPL, ACSL1 and GPD2 was unchanged over time.
Resumo:
A Dutch Improved Red and White cross-breed heifer calf was evaluated for a muscular disorder resulting in exercise induced muscle stiffness. Clinical findings included generalized exercise-induced muscle spasms with normal response to muscle percussion. Electromyography showed no myotonic discharges, thus ruling out myotonia. Whereas histological examination of muscle tissue was unremarkable, Ca(2+)-ATPase activity of sarcoplasmatic reticulum membranes (SERCA1) was markedly decreased compared to control animals. Mutation analysis revealed the presence of a missense mutation in the ATP2A1 gene encoding the SERCA1 protein (p.Arg559Cys). The present case presents similarities to human Brody's disease, but also to pseudomyotonia and congenital muscular dystonia previously described in different cattle breeds.
Resumo:
The histidine triad nucleotide-binding (Hint2) protein is a mitochondrial adenosine phosphoramidase expressed in liver and pancreas. Its physiological function is unknown. To elucidate the role of Hint2 in liver physiology, the Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J x 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycaemia, an increase in plasma interprandial insulin but a decrease in glucose stimulated insulin secretion and defective thermoregulation upon fasting. Leptin mRNA in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II to III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. HIF-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-CoA dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) vs. 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . Conlusions: Hint2 positively regulates mitochondrial lipid metabolism and respiration, and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins. (HEPATOLOGY 2012.).
Resumo:
In adults with congenital heart disease and a systemic right ventricle, subaortic ventricular systolic dysfunction is common. Echocardiographic assessment of systolic right ventricular (RV) function in these patients is important but challenging. The aim of the present study was to assess the reliability of conventional echocardiographic RV functional parameters to quantify the systolic performance of a subaortic right ventricle. We compared 56 contemporary echocardiograms and cardiac magnetic resonance studies in 37 adults, aged 26.9 ± 7.4 years, with complete transposition and a subaortic right ventricle. The fractional area change (FAC), lateral tricuspid annular plane systolic excursion, lateral RV systolic motion velocities by tissue Doppler, RV myocardial performance index, and the rate of systolic RV pressure increase (dp/dt) measured across the tricuspid regurgitant jet were assessed by echocardiography and correlated with the cardiac magnetic resonance-derived RV ejection fraction (EF). The mean RVEF was 48.0 ± 7.8%. FAC (r(2) = 0.206, p = 0.001) and dp/dt (r(2) = 0.173, p = 0.009) significantly correlated with RVEF, and the other nongeometric echocardiographic parameters failed to show a significant correlation with RVEF by linear regression analysis. FAC <33% and dp/dt <1,000 mm Hg/s identified a RVEF of <50% with a sensitivity of 77% and 69% and a specificity of 58% and 87%, respectively. In conclusion, in patients with a systemic right ventricle, routine nongeometric echocardiographic parameters of RV function correlated weakly with cardiac magnetic resonance-derived EF. RV FAC and the measurement of the rate of systolic RV pressure increase (dp/dt) should be preferentially used to assess systemic systolic function in adult patients with a subaortic right ventricle.
Resumo:
Connective tissue growth factor (CTGF) is a profibrotic protein whose systemic levels are increased in liver cirrhosis. Here, association of CTGF with stages of liver injury and complications of cirrhotic liver disease has been analyzed in patients with different aetiologies of hepatic injury. CTGF is significantly increased in portal venous serum (PVS), hepatic venous serum (HVS) and systemic venous serum (SVS) of 46 patients with liver cirrhosis compared to eight liver-healthy controls. In patients´ blood samples CTGF in HVS is about 6% higher than PVS levels indicating that CTGF produced in the liver is released to the circulation. CTGF is not associated with stages of liver cirrhosis defined by CHILD-PUGH or MELD score nor with secondary complications of portal hypertension (varices, ascites, spontaneous bacterial peritonitis). Transforming growth factor β (TGFβ) induces CTGF synthesis in hepatocytes and a positive association of systemic TGFβ1 and SVS and HVS CTGF is found. Three months after placing transjugular intrahepatic portosystemic shunt (TIPS) hepatic venous pressure gradient is reduced whereas CHILD-PUGH score, TGFβ1 and CTGF are not altered in serum of 15 patients. Current data show that the cirrhotic liver releases little CTGF but SVS, HVS and PVS CTGF levels are not associated with residual liver function and complications of cirrhosis.
Resumo:
Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.
Resumo:
OBJECTIVE: During postnatal development, mammalian articular cartilage acts as a surface growth plate for the underlying epiphyseal bone. Concomitantly, it undergoes a fundamental process of structural reorganization from an immature isotropic to a mature (adult) anisotropic architecture. However, the mechanism underlying this structural transformation is unknown. It could involve either an internal remodelling process, or complete resorption followed by tissue neoformation. The aim of this study was to establish which of these two alternative tissue reorganization mechanisms is physiologically operative. We also wished to pinpoint the articular cartilage source of the stem cells for clonal expansion and the zonal location of the chondrocyte pool with high proliferative activity. METHODS: The New Zealand white rabbit served as our animal model. The analysis was confined to the high-weight-bearing (central) areas of the medial and lateral femoral condyles. After birth, the articular cartilage layer was evaluated morphologically at monthly intervals from the first to the eighth postnatal month, when this species attains skeletal maturity. The overall height of the articular cartilage layer at each juncture was measured. The growth performance of the articular cartilage layer was assessed by calcein labelling, which permitted an estimation of the daily growth rate of the epiphyseal bone and its monthly length-gain. The slowly proliferating stem-cell pool was identified immunohistochemically (after labelling with bromodeoxyuridine), and the rapidly proliferating chondrocyte population by autoradiography (after labelling with (3)H-thymidine). RESULTS: The growth activity of the articular cartilage layer was highest 1 month after birth. It declined precipitously between the first and third months, and ceased between the third and fourth months, when the animal enters puberty. The structural maturation of the articular cartilage layer followed a corresponding temporal trend. During the first 3 months, when the articular cartilage layer is undergoing structural reorganization, the net length-gain in the epiphyseal bone exceeded the height of the articular cartilage layer. This finding indicates that the postnatal reorganization of articular cartilage from an immature isotropic to a mature anisotropic structure is not achieved by a process of internal remodelling, but by the resorption and neoformation of all zones except the most superficial (stem-cell) one. The superficial zone was found to consist of slowly dividing stem cells with bidirectional mitotic activity. In the horizontal direction, this zone furnishes new stem cells that replenish the pool and effect a lateral expansion of the articular cartilage layer. In the vertical direction, the superficial zone supplies the rapidly dividing, transit-amplifying daughter-cell pool that feeds the transitional and upper radial zones during the postnatal growth phase of the articular cartilage layer. CONCLUSIONS: During postnatal development, mammalian articular cartilage fulfils a dual function, viz., it acts not only as an articulating layer but also as a surface growth plate. In the lapine model, this growth activity ceases at puberty (3-4 months of age), whereas that of the true (metaphyseal) growth plate continues until the time of skeletal maturity (8 months). Hence, the two structures are regulated independently. The structural maturation of the articular cartilage layer coincides temporally with the cessation of its growth activity - for the radial expansion and remodelling of the epiphyseal bone - and with sexual maturation. That articular cartilage is physiologically reorganized by a process of tissue resorption and neoformation, rather than by one of internal remodelling, has important implications for the functional engineering and repair of articular cartilage tissue.
Resumo:
Having determined in a phase I study the maximum tolerated dose of high-dose ifosfamide combined with high-dose doxorubicin, we now report the long-term results of a phase II trial in advanced soft-tissue sarcomas. Forty-six patients with locally advanced or metastatic soft-tissue sarcomas were included, with age <60 years and all except one in good performance status (0 or 1). The chemotherapy treatment consisted of ifosfamide 10 g m(-2) (continuous infusion for 5 days), doxorubicin 30 mg m(-2) day(-1) x 3 (total dose 90 mg m(-2)), mesna and granulocyte-colony stimulating factor. Cycles were repeated every 21 days. A median of 4 (1-6) cycles per patient was administered. Twenty-two patients responded to therapy, including three complete responders and 19 partial responders for an overall response rate of 48% (95% CI: 33-63%). The response rate was not different between localised and metastatic diseases or between histological types, but was higher in grade 3 tumours. Median overall survival was 19 months. Salvage therapies (surgery and/or radiotherapy) were performed in 43% of patients and found to be the most significant predictor for favourable survival (exploratory multivariate analysis). Haematological toxicity was severe, including grade > or =3 neutropenia in 59%, thrombopenia in 39% and anaemia in 27% of cycles. Three patients experienced grade 3 neurotoxicity and one patient died of septic shock. This high-dose regimen is toxic but nonetheless feasible in multicentre settings in non elderly patients with good performance status. A high response rate was obtained. Prolonged survival was mainly a function of salvage therapies.
Resumo:
OBJECTIVE: C-reactive protein (CRP) is a marker of systemic inflammation. Recently, it has been shown that CRP is present in amniotic fluid and fetal urine, and that elevated levels are associated with adverse pregnancy outcome. However, the precise source of amniotic fluid CRP, its regulation, and function during pregnancy is still a matter of debate. The present in vivo and in vitro studies were designed to investigate the production of CRP in human placental tissues. MATERIAL AND METHODS: Ten paired blood samples from peripheral maternal vein (MV), umbilical cord artery (UA) and umbilical vein (UV) were collected from women with elective caesarean sections at term. The placental protein accumulation capacity of hCG, hPL, leptin and CRP was compared with the dual in vitro perfusion method of an isolated cotyledon of human term placentae and quantified by ELISA. Values for accumulation (release) were calculated as total accumulation of maternal and fetal circuits normalized for tissue weight and duration of perfusion. For gene expression, RNA was extracted from placental tissue and reverse transcribed. RT-PCR and real-time PCR were performed using specific primers. RESULTS: The median (range) CRP level was significantly different between UA and UV [50.1 ng/ml (12.1-684.6) vs. 61 ng/ml (16.9-708.1)]. The median (range) difference between UV and UA was 9.3 ng/ml (2.2-31.6). A significant correlation was found between MV CRP and both UA and UV CRP levels. Median (range) MV CRP levels [2649 ng/ml (260.1-8299)] were 61.2 (6.5-96.8) fold higher than in the fetus. In vitro, the total accumulation rates (mean+/-SD) were 31+/-13 (mU/g/min, hCG), 1.16+/-0.19 (microg/g/min, hPL), 4.71+/-1.91 (ng/g/min, CRP), and 259+/-118 (pg/g/min, leptin). mRNA for hCG, hPL and leptin was detectable using conventional RT-PCR, while CRP mRNA could only be demonstrated by applying real-time RT-PCR. In the perfused tissue the transcript levels for the four proteins were comparable to those detected in the native control tissue. CONCLUSIONS: Our results demonstrate that the human placenta produces and releases CRP mainly into the maternal circulation similarly to other analyzed placental proteins under in vitro conditions. Further studies are needed to explore the exact role of placental CRP during pregnancy.
Resumo:
Drosophila arginine methyl-transferase 4 (DART4) belongs to the type I class of arginine methyltransferases. It catalyzes the methylation of arginine residues to monomethylarginines and asymmetrical dimethylarginines. The DART4 sequence is highly similar to mammalian PRMT4/CARM1, and DART4 substrate specificity has been conserved, too. Recently it was suggested that DART4/Carmer functions in ecdysone receptor mediated apoptosis of the polytene larval salivary glands and an apparent up-regulation of DART4/Carmer mRNA levels before tissue histolysis was reported. Here we show that in Drosophila larvae, DART4 is mainly expressed in the imaginal disks and in larval brains, and to a much lesser degree in the polytene larval tissue such as salivary glands. In glands, DART4 protein is present in the cytoplasm and the nucleus. The nuclear signal emanates from the extrachromosomal domain and gets progressively restricted to the region of the nuclear lamina upon pupariation. Surprisingly, DART4 levels do not increase in salivary glands during pupariation, and overexpression of DART4 does not cause precautious cell death in the glands. Furthermore, over- and misexpression of DART4 under the control of the alpha tubulin promoter do not lead to any major problem in the life of a fly. This suggests that DART4 activity is regulated at the posttranslational level and/or that it acts as a true cofactor in vivo. We present evidence that nuclear localization of DART4 may contribute to its function because DART4 accumulation changes from a distribution with a strong cytoplasmic component during the transcriptional quiescence of the young embryo to a predominantly nuclear one at the onset of zygotic transcription.